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Résumé

The goal of this document is to present the management of sparse
matrices in Scilab. We present the basic features of Scilab, which can
create sparse matrices and can convert from and to dense matrices. We
show how to solve sparse linear equations in Scilab, by using sparse
LU decomposition and iterative methods. We present the sparse Cho-
lesky decomposition. We present the functions from the UMFPACK
and TAUCS modules. We briefly present the internal sparse API. We
introduce to the Arnoldi package. We present the Matrix Market tool-
box, which reads and writes sparse matrix files. We analyze how to
solve the Poisson Partial Differential Equation with sparse matrices.
We present the Imsls toolbox, a set of iterative solvers for sparse linear
systems of equations.
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1 Introduction

In numerical analysis, a sparse matrix is a matrix populated primarily
with zeros[13]. Huge sparse matrices often appear in science or engineering
when solving partial differential equations.

Scilab provides several features to manage sparse matrices and perform
usual linear algebra operations on them. These operations includes all the
basic linear algebra including addition, dot product, transpose and the matrix
vector product. For these basic operations, we do not make any difference in
a script managing a dense matrix and a script managing a sparse matrix.

1.1 Note on this document

This document is an open-source project. The LATEX sources are available
on the Scilab Forge :

http://forge.scilab.org/index.php/p/docscisparse/

The LATEX sources are provided under the terms of the Creative Commons
Attribution-ShareAlike 3.0 Unported License :

http://creativecommons.org/licenses/by-sa/3.0

The Scilab scripts are provided on the Forge, inside the project, under the
scripts sub-directory. The scripts are available under the CeCiLL licence :

http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt

1.2 Overview

In this section, we make an overview of the features provided by Scilab
for sparse matrices.

The current set of tools available in Scilab for sparse matrices are the
following :

– management of sparse matrices of arbitrary size,
– basic algebra on sparse matrices, including, sum, dot product, trans-

pose, matrix-matrix product,
– sparse LU decomposition and resolution of linear equations from this

decomposition based on the Sparse package written by Kenneth S. Kun-
dert and Alberto Sangiovanni-Vincentelli,
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– sparse Cholesky decomposition and resolution of linear equations from
this decomposition, based on a sparse Cholesky factorization package
developed by Esmond Ng and Barry Peyton at ORNL and a multiple
minimun-degree ordering package by Joseph Liu at University of Wa-
terloo,

– iterative methods of linear systems of equations, including Precondi-
tionned Conjugate Gradient (pcg), Generalized Minimum Residual me-
thod (gmres), Quasi Minimal Residual method with preconditionning
(qmr),

– sparse LU decomposition and resolution of linear equations from this
decomposition based on the UMFPACK library,

– sparse Cholesky decomposition and resolution of linear equations from
this decomposition based on the TAUCS library,

– sparse eigenvalue computations, based on the Arpack library, using the
Implicitly Restarted Arnoldi Method.

Scilab manages several file formats read and write sparse matrices.
– Scilab is able to read matrices in the Harwell-Boeing format, thanks to

the ReadHBSparse function of the Umfpack module.
– The Matrix Market external module (available in ATOMS) provides

functions to read and write matrices in the Matrix Market format.

2 Basic features

In this section, we present the basic sparse matrix features. In the first
part, we review how to create a sparse matrix. Then we analyze how a sparse
matrix is stored internally.

2.1 Creating sparse matrices

The figure 1 present several functions to create sparse matrices.
In the following session, we use the sprand function to create a 100×1000

sparse matrix with density 0.001. The density parameter makes so that the
number of non-zero entries in the sparse matrix is approximately equal to
100 · 1000 · 0.001 = 100. Then we use the size function to compute the size
of the matrix. Finally, we compute the number of non-zero entries with the
nnz function.

-->A=sprand (100 ,1000 ,0.001);

5



sp2adj converts sparse matrix into adjacency form
speye sparse identity matrix
spones sparse matrix
sprand sparse random matrix
spzeros sparse zero matrix
full sparse to full matrix conversion
sparse sparse matrix definition
mtlb sparse convert sparse matrix
nnz number of non zero entries in a matrix
spcompack converts a compressed adjacency representation
spget retrieves entries of sparse matrix

Figure 1 – Basic features for sparse matrices.

-->size(A)

ans =

100. 1000.

-->nnz(A)

ans =

100.

The sparse and full functions works as complementary functions. In-
deed, the sparse function converts a full matrix into a sparse one, while the
full function converts a sparse matrix into a full one.

In the following session, we create a 3× 5 dense matrix. Then we use the
sparse function to convert it into a sparse matrix. Scilab then displays all
the non-zero entries of the matrix one at a time. Finally, we use the full

function to convert the sparse matrix into a dense one.

-->A = [

-->1 2 0 0 0

-->3 4 5 0 0

-->0 6 7 8 0

-->]

A =

1. 2. 0. 0. 0.

3. 4. 5. 0. 0.

0. 6. 7. 8. 0.

-->B = sparse(A)

B =

( 3, 5) sparse matrix
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( 1, 1) 1.

( 1, 2) 2.

( 2, 1) 3.

( 2, 2) 4.

( 2, 3) 5.

( 3, 2) 6.

( 3, 3) 7.

( 3, 4) 8.

-->C = full(B)

C =

1. 2. 0. 0. 0.

3. 4. 5. 0. 0.

0. 6. 7. 8. 0.

Sparse matrices can be real or complex. In the following session, we define
a 3-by-5 complex matrix of doubles.

-->A = [

-->1 2 0 0 0

-->3 4 5 0 0

-->0 6 7 8 0

-->];

-->B = [

-->9 10 0 0 0

-->11 12 13 0 0

-->0 14 15 16 0

-->];

-->C=complex(A,B)

C =

1. + 9.i 2. + 10.i 0 0 0

3. + 11.i 4. + 12.i 5. + 13.i 0 0

0 6. + 14.i 7. + 15.i 8. + 16.i 0

-->D=sparse(C)

D =

( 3, 5) sparse matrix

( 1, 1) 1. + 9.i

( 1, 2) 2. + 10.i

( 2, 1) 3. + 11.i

( 2, 2) 4. + 12.i

( 2, 3) 5. + 13.i

( 3, 2) 6. + 14.i

( 3, 3) 7. + 15.i

( 3, 4) 8. + 16.i
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2.2 Storage format

There are various ways of storing the nonzero entries of a sparse matrix.
In this section, we review how sparse matrices are stored internally, at the
library level.

As we are going to see, the format used in Scilab is very similar (but
not exactly identical) to the compressed sparse row format (CSR), in which
the nonzero entries are stored row-by-row. While this detail does not change
the way a user user sparse matrices at the interpreter level, it does have an
impact on the way the libraries are connected to Scilab. Hence, this is an
important feature of sparse matrices in Scilab and it is worthwhile to know
precisely what is stored.

In Scilab, a sparse matrix is defined in the modules/core/includes/s-

parse.h. This is a C struct with type scisparse and the following fields :
– int m : the number of rows.
– int n : the number of columns.
– int it : is equal to 0 if the matrix is real, and 1 if the matrix is complex.
– int nel : number of nonzero elements */
– int *mnel : an array with m entries. The entry mnel[i] is the number

of non nul elements of the i-th row.
– int *icol : an array with nel entries. The entry icol[j] is the column

of the j-th nonzero element.
– double *R : an array with nel entries. The entry R[j] is the real part

of the j-th nonzero element.
– double *I : an array with nel entries. The entry I[j] is the imaginary

part of the j-th nonzero element.
Consider the sparse matrix in the following example.

-->A = [

-->1 2 0

-->3 4 5

-->0 6 7

-->];

-->B = sparse(A);

In this case, the fields are the following.

B.m: 3

B.n: 3

B.it: 0

B.nel: 7

B.mnel: [2, 3, 2]
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B.icol: [1, 2, 1, 2, 3, 2, 3]

B.R: [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0]

B.I: [undefined]

This current storage is different from the CSR format, in the sense that
there is no array containing the row indices corresponding to the values and
no array containing the cumulated indexes where each column starts.

2.3 Sparse arithmetic

Scilab provides arithmetic operators for sparse matrices.
Indeed, most operators are defined for sparse matrices. For example, the

operators +, - and * can be used for sparse matrices, as shown in the following
example.

Afull= [

2 3 0 0 0;

3 0 4 0 6;

0 -1 -3 2 0;

0 0 1 0 0;

0 4 2 0 1

];

A = sparse(Afull);

B = 2*A

C = A+B

x = [1;2;3;4;5]

b = A * x

Another operator is the backslash operator \, which is presented in the
next section.

3 Solving sparse linear equations

Scilab provide direct and iterative methods to solve linear systems of
equations. The figure 2 presents these methods.

3.1 Sparse LU decomposition

The sparse LU decomposition available in Scilab is based on the Sparse
package written by Kenneth S. Kundert and Alberto Sangiovanni-Vincentelli
[5]. This package is available in Netlib [4].
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lufact sparse lu factorization
lusolve sparse linear system solver
luget extraction of sparse LU factors
ludel utility function used with lufact
chfact sparse Cholesky factorization
chsolve sparse Cholesky solver
spchol sparse Cholesky factorization
gmres Generalized Minimum RESidual method
pcg precondioned conjugate gradient
qmr quasi minimal resiqual method with preconditioning

Figure 2 – Direct and iterative functions to solve sparse linear equations.

Sparse is a flexible package of subroutines written in C used to quickly
and accurately solve large sparse systems of linear equations. The package is
able to handle arbitrary real and complex square matrix equations. Besides
being able to solve linear systems, it is also able to quickly solve transposed
systems, find determinants, and estimate errors due to ill-conditioning in the
system of equations and instability in the computations. Sparse also provides
a test program that is able read matrix equations from a file, solve them, and
print useful information about the equation and its solution.

Sparse is generally as fast or faster than other popular sparse matrix
packages when solving many matrices of similar structure. Sparse does not
require or assume sym- metry and is able to perform numerical pivoting to
avoid unnecessary error in the solution. It handles its own memory allocation,
which allows the user to forgo the hassle of providing adequate memory. It
also has a natural, flexi- ble, and efficient interface to the calling program.

Sparse was originally written for use in circuit simu- lators and is parti-
cularly apt at handling node- and modified-node admittance matrices. The
systems of linear generated in a circuit simulator stem from solving large
systems of nonlinear equations using Newton’s method and integrating large
stiff systems of ordinary differential equations. However, Sparse is also sui-
table for other uses, one in particular is solving the very large systems of
linear equations resulting from the numerical solution of partial differential
equations.

The lufact, lusolve, luget and ludel functions is a set of functions
providing a sparse direct method to solve linear systems of equations. As
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their names suggest it, they use a sparse LU decomposition to compute the
solution.

In the following script, we define a sparse matrix spA with entries (1, 2, 3, 4)
on the diagonal only. Then we use the lufact function to compute the LU
decomposition of the matrix spA. The output of the lufact function are a
handle to the factors h and the rank rk of the matrix. The variable h has no
direct use for the user. In fact, it represents a memory location where Scilab
has stored the actual factors. The purpose of the variable h is to be an input
argument of the lusolve, luget and ludel functions. In the script, we pass
h and the right hand-side b to the lusolve function, which produces the
solution x of the equation Ax = b. Finally, we delete the LU factors with the
ludel function.

non_zeros =[1,2,3,4];

rows_cols =[1 ,1;2 ,2;3 ,3;4 ,4];

spA = sparse(rows_cols ,non_zeros)

[h,rk] = lufact(sp);

b = [1 1 1 1]’;

x=lusolve(h,b)

ludel(h);

The previous script produces the following output.

-->non_zeros =[1,2,3,4];

-->rows_cols =[1 ,1;2 ,2;3 ,3;4 ,4];

-->spA = sparse(rows_cols ,non_zeros)

spA =

( 4, 4) sparse matrix

( 1, 1) 1.

( 2, 2) 2.

( 3, 3) 3.

( 4, 4) 4.

-->[h,rk] = lufact(sp);

-->b = [1 1 1 1]’;

-->x=lusolve(h,b)

x =

1.

0.5

0.3333333

0.25

-->ludel(h);
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3.2 Sparse backslash

The backslash operator \ can be used with sparse matrices. Depending on
the size of the sparse matrix A, the statement A\b has two different meanings.

– If the matrix A is square, therefore the linear system of equations Ax = b
is solved. In this case, the sparse backslash uses a sparse LU decompo-
sition to solve the problem.

– If the matrix A is non square, therefore the linear least squares problem
min ‖Ax − b‖2 is solved. In this case, the sparse backslash uses the
normal equations and form the linear system of equations ATAx = AT b.
Then a sparse LU decomposition is used to solve the problem.

In the following example, we solve a sparse 5-by-5 system of linear equa-
tions.

Afull= [

2 3 0 0 0;

3 0 4 0 6;

0 -1 -3 2 0;

0 0 1 0 0;

0 4 2 0 1

];

A = sparse(Afull);

b = sparse ([8 ; 45; -3; 3; 19]);

x = A\b

In the following example, we solve a 7-by-5 overdetermined system of
equations.

Afull= [

2 3 0 0 0

3 0 4 0 6

0 -1 -3 2 0

0 0 1 0 0

0 4 2 0 1

2 -5 0 -6 3

2 0 -5 -6 3

];

A = sparse(Afull);

b = [8 ; 45; -3; 3; 19; -5; 8];

x = A\b

norm(A*x-b)

The previous script produces the following output.

-->x = A\b

x =
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- 0.3094732

2.9663371

0.7519368

1.6123139

7.0851981

-->norm(A*x-b)

ans =

3.2147514

The sparse backslash operator \ is based on the lufact and lusolve

functions. It is implemented with overloading. For example, the %sp_l_sp

function provides the operation A\b, where both A and b are sparse.
The sparse backslash in Scilab v5.3.2 has a major drawback : it does not

manage sparse triangular matrices [8].

3.3 Iterative methods for sparse linear equations

The pcg function is a precondioned conjugate gradient algorithm for sym-
metric positive definite matrices. It can managed dense or sparse matrices,
but is mainly designed for large sparse systems of linear equations. It is based
on a Scilab port of the Matlab scripts provided in [1].

In the following example, we define a dense, well-conditionned 10 × 10
dense matrix A and a right hand size b made of ones. We use the sparse

function to convert the A matrix into the sparse matrix Asparse. We finally
use the pcg function on the sparse matrix Asparse in order to solve the
equations Ax = b. This produces the solution x, a status flag fail, the
relative residual norm err, the number of iterations iter and the vector of
the residual relative norms res.

A=[ 94 0 0 0 0 28 0 0 32 0

0 59 13 5 0 0 0 10 0 0

0 13 72 34 2 0 0 0 0 65

0 5 34 114 0 0 0 0 0 55

0 0 2 0 70 0 28 32 12 0

28 0 0 0 0 87 20 0 33 0

0 0 0 0 28 20 71 39 0 0

0 10 0 0 32 0 39 46 8 0

32 0 0 0 12 33 0 8 82 11

0 0 65 55 0 0 0 0 11 100];

b=ones (10 ,1);

Asparse=sparse(A);

[x, fail , err , iter , res ]=..

pcg(Asparse ,b,maxIter =30,tol=1d-12)
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The previous script produces the following output.

-->[x, fail , err , iter , res ]=..

--> pcg(Asparse ,b,maxIter =30,tol=1d-12)

res =

1.

0.2302743

0.1102172

0.0223463

0.0096446

0.0052038

0.0037525

0.0006959

0.0000207

0.0000042

1.697D-13

iter =

10.

err =

1.697D-13

fail =

0.

x =

0.0071751

0.0134492

0.0067610

0.0050339

0.0073735

0.0065248

0.0042064

0.0093434

0.0044640

0.0023456

We see that 10 iterations were required to get a residual close to 10−13.

4 Cholesky factorizations

In this section, we review the chfact and spchol functions, which both
perform sparse Cholesky decomposition.

The figure 3 presents the functions which allow to compute the Cholesky
decomposition of sparse matrices.

14



chfact sparse Cholesky factorization
chsolve sparse Cholesky solver
spchol sparse cholesky factorization with permutations

Figure 3 – Cholesky factorizations for sparse matrices.

4.1 The chfact and chsolve functions

The chfact and chsolve functions can be combined in order to solve
sparse linear systems of equations, if the matrix is symmetric positive definite.
In the following example, we solve the equation Ax = b where A is a sparse
5-by-5 symmetric definite positive matrix.

Afull= [

2 -1 0 0 0;

-1 2 -1 0 0;

0 -1 2 -1 0;

0 0 -1 2 -1;

0 0 0 -1 2

];

A = sparse(Afull);

h = chfact(A);

b = [0 ; 0; 0; 0; 6];

chsolve(h,b)

In the previous script, the variable h is a complex data structure which
contains the Cholesky decomposition. This decomposition makes use of a
minimal degree algorithm, which reduces the fill-in in the Cholesky factors.
Hence, the Cholesky decomposition makes implicitely use of a permutation
matrix P , such that P ′AP can be more efficiently factored than A.

The previous script produces the following output.

-->chsolve(h,b)

ans =

1.

2.

3.

4.

5.
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4.2 The spchol function

The [L,P]=spchol(X) statement produces a sparse lower triangular ma-
trix L and a sparse permutation matrix P such that PLLTP T = X. In the
following script, we use the spchol function to compute the sparse Cholesky
decomposition of a symmetric definite positive matrix.

-->Afull= [

--> 2 -1 0 0 0;

--> -1 2 -1 0 0;

--> 0 -1 2 -1 0;

--> 0 0 -1 2 -1;

--> 0 0 0 -1 2

-->];

-->A = sparse(Afull);

[L,P]= spchol(A)

The previous script produces the following output.

-->[L,P]= spchol(A)

P =

( 5, 5) sparse matrix

( 1, 3) 1.

( 2, 4) 1.

( 3, 5) 1.

( 4, 2) 1.

( 5, 1) 1.

L =

( 5, 5) sparse matrix

( 1, 1) 1.4142136

( 2, 1) - 0.7071068

( 2, 2) 1.2247449

( 3, 3) 1.4142136

( 4, 3) - 0.7071068

( 4, 4) 1.2247449

( 5, 2) - 0.8164966

( 5, 4) - 0.8164966

( 5, 5) 0.8164966

The spchol function [10] uses two Fortran packages : a sparse Cholesky
factorization package developed by Esmond Ng and Barry Peyton at ORNL
and a multiple minimun-degree ordering package by Joseph Liu at University
of Waterloo.

The spchol function can be used to solve linear systems of equations.
Indeed, assume that A is a sparse n-by-n real symmetric matrix and that b
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is a n-by-1 vector. We may want to solve the system of equations

Ax = b (1)

for x. Assume that the matrix A can be decomposed into :

A = PLLTP T , (2)

where L is an n-by-n lower triangular real matrix and P is an n-by-n permu-
tation matrix. The product P TP is the identity matrix, which implies :

(AP )(P Tx) = b (3)

We left multiply this equation by P T and get :

(P TAP )(P Tx) = P T b (4)

Hence

(P TPLLTP TP )(P Tx) = P T b (5)

which simplifies into

(LLT )(P Tx) = P T b. (6)

In order to solve this equation, we first solve the equation

(LLT )y = P T b (7)

where

y = P Tx. (8)

In the Scilab language, the solution is

y = L’\(L\P’*b)

Moreover, x=P*y, which implies

x = P*(L’\(L\(P’*b)))

In the following script, we use the spchol function to solve a symmetric
sparse linear system of equations.
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Afull= [

2 -1 0 0 0;

-1 2 -1 0 0;

0 -1 2 -1 0;

0 0 -1 2 -1;

0 0 0 -1 2

];

A = sparse(Afull);

[L,P] = spchol(A);

n = size(A,"r");

e = (1:n)’;

b = A * e;

x = P*(L’\(L\(P’*b)))

The previous script produces the following output.

-->x = P*(L’\(L\(P’*b)))

x =

1.

2.

3.

4.

5.

4.3 Conclusion

The spchol and chfact actually use the same algorithms. The method
is based on the minimum degree algorithm, which produces a permutation
matrix P which reduces the amount of fill-in in the Cholesky factors. The
chsolve function may be considered as unnecessary, since the sparse backs-
lash operator is designed for the same purpose.

5 Functions from the UMFPACK module

The UMFPACK module provide several functions related to sparse ma-
trices. These functions are presented in the figure figure 4.

In the following script, we read a sparse matrix provided in the Umfpack
module with the ReadHBSparse function. Then we plot the sparsity pattern
with the PlotSparse function.

umfdir = fullfile(SCI ,"modules","umfpack","examples");

filename = fullfile(umfdir ,"arc130.rua");
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PlotSparse plot the pattern of non nul elements of a sparse matrix
ReadHBSparse read a Harwell-Boeing sparse format file
cond2sp computes an approximation of the 2-norm condition

number of a s.p.d. sparse matrix
condestsp estimate the condition number of a sparse matrix
rafiter (obsolete) iterative refinement for a s.p.d. linear system
res with prec computes the residual r = Ax-b with precision

Figure 4 – Functions from the umfpack module.

A = ReadHBSparse(filename );

PlotSparse(A,"y+");

The previous script produces the figure 5.

6 The UMFPACK package

The UMFPACK package provide several direct algorithms to compute
LU decompositions of sparse matrices. The algorithms also solve sparse linear
systems of equations, that is, they solve the equation Ax = b, where A is a
sparse squares matrix and b is a sparse vector. These functions are presented
in the figure 6.

The following example shows how to combine the umf_lufact function
with the umf_lusolve function in order to solve the linear system of equa-
tions Ax = b.

Afull= [

2 3 0 0 0;

3 0 4 0 6;

0 -1 -3 2 0;

0 0 1 0 0;

0 4 2 0 1

];

A = sparse(Afull)

b = [8 ; 45; -3; 3; 19];

h = umf_lufact(A);

x = umf_lusolve(h,b)

umf_ludel(h);

The previous script produces the following output.
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nnz = 1037

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Figure 5 – Sparsity pattern of the arc130 matrix.

umf license display the umfpack license
umf ludel utility function used with umf lufact
umf lufact lu factorisation of a sparse matrix
umf luget retrieve lu factors at the scilab level
umf luinfo get information on LU factors
umf lusolve solve a linear sparse system given the LU factors
umfpack solve sparse linear system

Figure 6 – Functions from the umfpack module.
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taucs chdel utility function used with taucs chfact
taucs chfact cholesky factorisation of a sparse s.p.d. matrix
taucs chget retrieve the Cholesky factorization at the scilab level
taucs chinfo get information on Cholesky factors
taucs chsolve solve a linear sparse system given the Cholesky factors
taucs license display the taucs license

Figure 7 – Functions from the TAUCS module.

-->x = umf_lusolve(h,b)

x =

1.

2.

3.

4.

5.

In the previous script, the variable h is a matrix handle, which contains
informations related to the sparse matrix. This is why it is necessary to
explicitely delete the matrix with the umf_ludel function. Indeed, if we do
not delete the matrix handle, there is a loss of memory.

The Umfpack library was developped by Timothy Davis [2], from the
University of Florida. His package is distributed under the GNU GPL license.

7 The TAUCS package

The TAUCS package provide several direct algorithms to compute Cho-
lesky decompositions of sparse matrices. This package only manage symme-
tric positive definite matrices. The algorithms also solve sparse linear systems
of equations, that is, they solve the equation Ax = b, where A is a sparse
squares matrix and b is a sparse vector.

The TAUCS package is available in the UMFPACK module. The functions
provided in the TAUCS package are presented in the figure 7.

In the following example, we factor a sparse matrix and solve the associa-
ted linear system of equations. Notice that the matrix A is symmetric positive
definite.

Afull= [

2 -1 0 0 0;
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-1 2 -1 0 0;

0 -1 2 -1 0;

0 0 -1 2 -1;

0 0 0 -1 2

];

A = sparse(Afull);

b = [0 ; 0; 0; 0; 6];

h = taucs_chfact(A);

x = taucs_chsolve(h,b)

taucs_chdel(h);

In the previous script, the variable h is a matrix handle, which contains
informations related to the sparse matrix. This is why it is necessary to
explicitely delete the matrix with the taucs_chdel function. Indeed, if we
do not delete the matrix handle, there is a loss of memory.

The TAUCS library was developed by Sivan Toledo from Tel-Aviv Uni-
versity [12].

8 The API

Scilab provides an API to manage sparse matrices. The figure 8 presents
the functions to read or write sparse matrices in gateways. The figure 9
presents the functions to read or write sparse matrices in lists.

The following read_sparse function is a sample example of some of the
functions which may be used in gateways which manage sparse matrices. This
example is extracted from the help pages of Scilab.

The read_sparse function takes a sparse matrix of doubles as input ar-
gument and prints its content in the console. The sparse matrix may be real
or complex, which is taked into account in the gateway, based on the output
of the isVarComplex function. If the matrix is complex, we call the getCom-

plexSparseMatrix, which sets the data structures of the sparse matrix. The
data structures associated with sparse matrices are presented in the section
2.2 :

– iRows : the number of rows,
– iCols : the number of columns,
– iNbItem : the number of nonzero entries,
– piNbItemRow : the number of nonzeros on each row,
– piColPos : the column index of each nonzero entry,
– pdblReal : the real part of the nonzero entry,
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Read sparse doubles matrices in gateways

getSparseMatrix R. a sp. mat.
getComplexSparseMatrix R. a complex sp. mat.
readNamedSparseMatrix R. a named sp. mat.
readNamedComplexSparseMatrix R. a named complex sp. mat.

Write sparse doubles matrices in gateways

createSparseMatrix W. a sp. mat.
createComplexSparseMatrix W. a complex sp. mat.
createNamedSparseMatrix W. a named sp. mat.
createNamedComplexSparseMatrix W. a named complex sp. mat.

Read/Write sparse boolean matrices in gateways

getBooleanSparseMatrix R. a boolean sp. mat.
readNamedBooleanSparseMatrix R. a named boolean sp. mat.
createBooleanSparseMatrix W. a boolean sp. mat.
createNamedBooleanSparseMatrix W. a named boolean sp. mat.

Figure 8 – The sparse API, to be used in gateways.

– pdblImg : the imaginary part of the nonzero entry.
The getSparseMatrix function has the same effect on real matrices, but only
the pdblReal array is set.

int read_sparse(char *fname ,unsigned long fname_len)

{

SciErr sciErr;

int i,j,k;

int* piAddr = NULL;

int iRows = 0;

int iCols = 0;

int iNbItem = 0;

int* piNbItemRow = NULL;

int* piColPos = NULL;

double* pdblReal = NULL;

double* pdblImg = NULL;

CheckRhs (1,1);

sciErr = getVarAddressFromPosition(pvApiCtx , 1, &piAddr );

if(sciErr.iErr)

{

printError (&sciErr , 0);

return 0;

}

if(isVarComplex(pvApiCtx , piAddr ))
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Read sparse matrices in a list

getSparseMatrixInList
R. a sp. mat. of doubles in a list.

getComplexSparseMatrixInList
R. a sp. mat. of complex doubles in a list.

readSparseMatrixInNamedList
R. a named sp. mat. of doubles in a list.

readComplexSparseMatrixInNamedList
R. a named sp. mat. of complex doubles in a list.

Write sparse matrices in lists

createSparseMatrixInList
W. a sp. mat. of doubles in a list.

createComplexSparseMatrixInList
W. a sp. mat. of complex doubles in a list.

createSparseMatrixInNamedList
W. a sp. mat. of doubles in a named list.

createComplexSparseMatrixInNamedList
W. a sp. mat. of complex doubles in a named list.

Read/Write sparse boolean matrices in lists

getBooleanSparseMatrixInList
R. a sp. mat. of booleans in a list.

readBooleanSparseMatrixInNamedList
R. a sp. mat. of booleans in a named list.

createBooleanSparseMatrixInList
W. a sp. mat. of booleans in a list.

createBooleanSparseMatrixInNamedList
W. a sp. mat. of booleans in a named list.

Figure 9 – The sparse API to read/write in lists.
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{

sciErr = getComplexSparseMatrix(pvApiCtx ,

piAddr , &iRows , &iCols , &iNbItem , &piNbItemRow ,

&piColPos , &pdblReal , &pdblImg );

}

else

{

sciErr = getSparseMatrix(pvApiCtx , piAddr ,

&iRows , &iCols , &iNbItem ,

&piNbItemRow , &piColPos , &pdblReal );

}

if(sciErr.iErr)

{

printError (&sciErr , 0);

return 0;

}

sciprint("Sparse %d item(s)\n", iNbItem );

k = 0;

for(i = 0 ; i < iRows ; i++)

{

for(j = 0 ; j < piNbItemRow[i] ; j++)

{

sciprint("(%d,%d) = %f",

i+1, piColPos[k], pdblReal[k]);

if(isVarComplex(pvApiCtx , piAddr ))

{

sciprint(" %+fi", pdblImg[k]);

}

sciprint("\n");

k++;

}

}

LhsVar (1) = 0;

return 0;

}

9 The ARnoldi PACKage

ARPACK is a collection of Fortran77 subroutines designed to solve large
scale eigenvalue problems. The functions available in Scilab are presented in
the figure 10.

The package is designed to compute a few eigenvalues and corresponding
eigenvectors of a general n by n matrix A. It is most appropriate for large
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sparse or structured matrices A where structured means that a matrix-vector
product w = Av requires order n rather than the usual order n2 floating point
operations. This software is based upon an algorithmic variant of the Arnoldi
process called the Implicitly Restarted Arnoldi Method (IRAM). When the
matrix A is symmetric it reduces to a variant of the Lanczos process called
the Implicitly Restarted Lanczos Method (IRLM). These variants may be
viewed as a synthesis of the Arnoldi/Lanczos process with the Implicitly
Shifted QR technique that is suitable for large scale problems. For many
standard problems, a matrix factorization is not required. Only the action of
the matrix on a vector is needed.

ARPACK software is capable of solving large scale symmetric, nonsym-
metric, and generalized eigenproblems from significant application areas. The
software is designed to compute a few (k) eigenvalues with user specified fea-
tures such as those of largest real part or largest magnitude. Storage require-
ments are on the order of nk locations. No auxiliary storage is required. A set
of Schur basis vectors for the desired k-dimensional eigen-space is computed
which is numerically orthogonal to working precision. Numerically accurate
eigenvectors are available on request.

The following is a list of the main features of the library :
– Reverse Communication Interface.
– Single and Double Precision Real Arithmetic Versions for Symmetric,

Non-symmetric,
– Standard or Generalized Problems.
– Single and Double Precision Complex Arithmetic Versions for Standard

or Generalized Problems.
– Routines for Banded Matrices - Standard or Generalized Problems.
– Routines for The Singular Value Decomposition.
– Example driver routines that may be used as templates to implement

numerous Shift-Invert strategies for all problem types, data types and
precision.

10 The Matrix Market module

The Matrix Market (MM) exchange formats provide a simple mechanism
to facilitate the exchange of matrix data. In particular, the objective has
been to define a minimal base ASCII file format which can be very easily
explained and parsed, but can easily adapted to applications with a more
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dnaupd compute approximations to a few eigenpairs of
a real linear operator

dneupd compute the converged approximations to eigenvalues
of Az = λBz, approximations to a few eigenpairs
of a real linear operator

dsaupd compute approximations to a few eigenpairs of a real and
symmetric linear operator

dsaupd compute approximations to the converged approximations to
eigenvalues of Az = λBz

znaupd compute a few eigenpairs of a complex linear operator
with respect to a semi-inner product defined by a
hermitian positive semi-definite real matrix B.

zneupd compute approximations to the converged approximations to
eigenvalues of Az = λBz

Figure 10 – Functions from the Arnoldi Package.

rigid structure, or extended to related data objects. The MM exchange format
for matrices is really a collection of affiliated formats which share design
elements.

In the specification, two matrix formats are defined.
– Coordinate Format. A file format suitable for representing general sparse

matrices. Only nonzero entries are provided, and the coordinates of
each nonzero entry is given explicitly. This is illustrated in the example
below.

– Array Format. A file format suitable for representing general dense
matrices. All entries are provided in a pre-defined (column-oriented)
order.

The Matrix Market file format can be used to manage dense or sparse
matrices. MM coordinate format is suitable for representing sparse matrices.
Only nonzero entries need be encoded, and the coordinates of each are given
explicitly.

http://atoms.scilab.org/toolboxes/MatrixMarket

In order to install the Matrix Market module, we use the atoms system,
as in the following script.
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mminfo Extracts size and storage information
mmread Reads a Matrix Market file
mmwrite Writes a sparse or dense matrix

Figure 11 – Functions from the Matrix Market module.

atomsInstall("MatrixMarket")

The table 11 presents the functions provided by the Matrix Market mo-
dule.

In the following script, we create a sparse matrix with the sparse function
and save it into a file with the mmwrite function.

A=sparse ([1 ,1;1 ,3;2 ,2;3 ,1;3 ,3;3 ,4;4 ,3;4 ,4] ,..

[9;27+ %i;16;27 -%i ;145;88;88;121] ,[4 ,4]) ;

filename = TMPDIR+"/A.mtx";

mmwrite(filename ,A);

In the following session, we use the mminfo function to extract informations
from this file.

-->mminfo(filename );

=====================================

Information about MatrixMarket file :

C:\Users\myname\AppData\Local\Temp\SCI_TMP_8216_/A.mtx

%%% Generated by Scilab 11-Jun -2010

storage: coordinate

entry type: complex

symmetry: hermitian

=====================================

In the following session, we use another calling sequence of the mminfo func-
tion to extract data from the file. This allows to get the number of rows rows,
the number of columns cols, the number of entries and other informations
as well.

-->[rows ,cols ,entries ,rep ,field ,symm ,comm] = mminfo(filename)

comm =

%%% Generated by Scilab 11-Jun -2010

symm =

hermitian

field =

complex

rep =

coordinate
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entries =

6.

cols =

4.

rows =

4.

In the following session, we use the mmread function to read the content of
the file and create the matrix A. We use the nnz function to compute the
number of nonzero entries in the matrix.

-->A=mmread(filename)

A =

( 4, 4) sparse matrix

( 1, 1) 9.

( 1, 3) 27. + 1.i

( 2, 2) 16.

( 3, 1) 27. - 1.i

( 3, 3) 145.

( 3, 4) 88.

( 4, 3) 88.

( 4, 4) 121.

-->nnz(A)

ans =

8.

11 Solving Poisson PDE with Sparse Matrices

In this section, we present the resolution of the Poisson Partial Differential
Equation in Scilab with sparse matrices. We show that Scilab 5 can solve
in a few seconds sparse linear systems of equations with as many as 250
000 unknowns because Scilab only store nonzero entries. The computations
are based on the Scibench module, a toolbox which provides a collection of
benchmarks for Scilab. This section was first published at [7].

11.1 Introduction

Sharma and Gobbert analyzed the performance of Scilab for the resolution
of sparse linear systems of equations associated with the Poisson equation
[11]. In this document, we try to reproduce their experiments.
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We consider the Poisson problem with homogeneous Dirichlet boundary
conditions and are interested in the numerical solution based on finite diffe-
rences.

We consider the 2 dimensional Partial Differential Equation :

−∆u = f in the domain,
u = 0 on the frontier.

where the two dimensionnal Laplace operator is

∆u =
∂2u

dx2
+
∂2u

dy2

We consider the domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.
The function f is defined by

f(x, y) = −2π2cos(2πx)sin2(πy)− 2π2sin2(πx)cos(2πy)

The solution is
u(x, y) = sin2(πx)sin2(πy)

We use a second order finite difference approximation of the Laplace ope-
rator based on a grid of N-by-N points.

Sparse matrices can be managed in Scilab since 1989 [3]. In Scilab 5.0
(i.e. in 2008), the UMFPACK module was added.

The Scibench external module :

http://atoms.scilab.org/toolboxes/scibench

provides a collection of benchmark scripts to measure the performance
of Scilab. For example, it contains benchmarks for the dense matrix-matrix
product, the dense backslash operator, the Cholesky decomposition or 2D
Lattice Boltzmann simulations.

In order to install this module, we use the statement :

atomsInstall("scibench")

and restart Scilab.
The version 0.6 includes benchmarks for sparse matrices, based on the

Poisson equation. The performance presented in this document are measured
with Scilab 5.3.2 on Windows XP with a 4GB computer using Intel Xeon
E5410 4*2.33 GHz processors.

The script that we are going to use is poisson.sce, which is provided in
the demos directory of the module.
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Figure 12 – Sparsity pattern of the Poisson matrix.

11.2 The sparse matrix

The scibench_poissonA(n) statement creates a sparse matrix equation
associated with n cells in the X coordinate and n cells in the Y coordinate.
Before calling this session, we call the stacksize function in order to let Scilab
allocate as much memory as possible. Then we call the PlotSparse function
to plot the sparsity pattern of the matrix.

stacksize("max");

A = scibench_poissonA (50);

PlotSparse(A)

The previous script produces the plot in the figure 12.
We emphasize that the previous matrix is a n2-by-n2 sparse matrix. Even

for moderate values of n, this creates huge matrices. Fortunately, only nonzero
entries are stored, so that Scilab has no problem to store it, provided that
the nonzero entries can be stored in the memory.

-->size(A)

ans =

2500. 2500.
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The Kronecker operator is used, so that the computation of the matrix is
vectorized. To edit the code, we just run the following code.

-->edit scibench_poissonA

At the core of the algorithm, we find the statement

A = I .*. T + T .*. I

where T is a sparse matrix and I is the sparse n-by-n identity matrix. Hence,
creating the whole matrix is done with only one statement.

11.3 The Poisson Solver

The scibench_poisson function solves the 2D Poisson equation. Its cal-
ling sequence is

scibench_poisson ( N , plotgraph , verbose , solver )

where N is the number of cells, plotgraph is a boolean to plot the graphics,
verbose is a boolean to print messages and solver is a function which solves
the linear equation A*x=b.

The solver argument is designed so that we can customize the linear equa-
tion solver which we want to use. For example, if we want to use the sparse
backslash operator, all we have to do is to create the mysolverBackslash

function as below.

function u=mysolverBackslash(N, b)

A = scibench_poissonA(N);

u = A\b;

endfunction

The following script solves the Poisson equation with N = 50.

scf();

scibench_poisson (50, %t , %t , mysolverBackslash );

The previous script produces the following output, where h is the dimension-
nal spacee step and enorminf is the value of the infinite norm of the error.

->scibench_poisson (50, %t , %t , mysolverBackslash );

N = 50

h = 1.9607843137254902e-002

h^2 = 3.8446751249519417e-004

enorminf = 1.2634082165868810e-003

C = enorminf / h^2 = 3.2861247713424775e+000

wall clock time = 0.15 seconds
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Figure 13 – Approximate solution and numerical error of the Poisson equa-
tion.

The previous script also produces the plot in the figure 13.
It is then easy to use the pcg function built in Scilab, which uses a pre-

conditionned conjugate gradient algorithm. We use the scibench_poissonAu
function, which computes the A*u product without actually storing the ma-
trix A.

function u=mysolverPCG(N, b)

tol = 0.000001;

maxit = 9999;

u = zeros(N^2,1);

[u,flag ,iter ,res] = ..

pcg(scibench_poissonAu ,b,tol ,maxit ,[],[],u);

endfunction

scf();

[timesec ,enorminf ,h] = ..

scibench_poisson (50, %f , %t , mysolverPCG );
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11.4 The benchmark

Based on the scibench module, it is easy to compare various sparse linear
equation solvers in Scilab. We compared the following functions :

– sparse backslash (which internally use a sparse LU decomposition),
– pcg function,
– UMPFACK module,
– the TAUCS module.
Both the UMFPACK and TAUCS modules were created by Bruno Pincon

[9].
In order to use the UMFPACK module, we created the following mysol-

verUMF function which solves the A*u=b equation.

function u = mysolverUMF(N,b)

A = scibench_poissonA(N);

humf = umf_lufact(A);

u = umf_lusolve(humf ,b)

umf_ludel(humf)

endfunction

We also created the following wrapper for the TAUCS module.

function u = mysolverTAUCS(N,b)

A = scibench_poissonA(N);

hchol = taucs_chfact(A);

u = taucs_chsolve(hchol ,b)

taucs_chdel(hchol)

endfunction

We were unable to use the TAUCS solver, which makes Scilab unstable
in this case. This problem was reported in the following bug report :

http://bugzilla.scilab.org/show_bug.cgi?id=8824

It is straightforward to created increasingly large matrices and to measure
the time required to solve the Poisson equation. The script is provided within
the demos of the scibench module. The plot in the figure 14 compares the
various solvers.

It is obvious that, in this case, the UMFPACK module is much faster.
The fact that we use the pcg function without actually preconditionning

the matrix is an obvious limitation of this benchmark. This is why we work
on updating the sparse ILU preconditionners in the following Forge project :

http://forge.scilab.org/index.php/p/spilu/
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Figure 14 – Comparison of solvers for the sparse linear system of equations
of the Poisson equation.
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Solver N Matrix Size Time (s)
Backslash 50 2500-by-2500 0.15
PCG 50 2500-by-2500 0.09
Backslash 100 10000-by-10000 4.32
PCG 100 10000-by-10000 0.32
Backslash 200 40000-by-40000 88.89
PCG 200 40000-by-40000 2.03
UMFPACK 200 40000-by-40000 0.81
PCG 300 90000-by-90000 7.27
UMFPACK 300 90000-by-90000 2.35
PCG 500 250000-by-250000 44.77

Figure 15 – The Poisson benchmark for various size of matrices.

The current work is based on the former Scilin project.
This benchmark shows that we can solve really large systems of equations.

The table in the figure 15 displays the performance measures.
For matrices larger than approximately 400, the UMFPACK functions

fails to solve the equation because they require more memory than Scilab
can provide to it.

--> scibench_poisson (400, %t , %t , mysolverUMF )

!--error 999

umf_lufact: An error occurred:

symbolic factorization: not enough memory

at line 3 of function mysolverUMF called by :

at line 95 of function scibench_poisson called by :

scibench_poisson (400, %t , %t , mysolverUMF )

We emphasize that the actual size of the matrix does not matter. What
matters is the number of nonzero terms in the matrix. For example, with
N=500, the matrix is 250000-by-250000 but has only 1 248 000 nonzero en-
tries.

-->A = scibench_poissonA ( 500 );

-->size(A)

ans =

250000. 250000.

-->nnz(A)

ans =

1248000.
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11.5 Conclusion

Scilab 5 can manage sparse matrices and solve partial differential equa-
tions such as the Poisson equation for example. Indeed, Scilab provides se-
veral sparse linear equation solvers, including a sparse backslash operator,
iterative methods (e.g. the pre-conditionned conjugate gradient algorithm)
and other direct solvers such as the UMFPACK or TAUCS modules. With
these tools we can solve huge systems of linear equations, because Scilab only
stores the nonzero entries of these massive matrices. The solvers may fail if
the memory required to store the matrix is beyond the capacity of Scilab,
but this happens only for huge matrices. In this case, the future Scilab 6 may
help to overcome this limitation, by removing the use of the stack which is
used by Scilab 5 (see [6] for more details on this topic). Another limitation of
Scilab is that there is currently no preconditionner for sparse linear systems
of equations. This limitation should be removed once the spilu module is
ready for a release.

12 The Imsls toolbox

The Imsls toolbox provides iterative methods for sparse linear systems of
equations.

More precisely, it provides functions to find x such that Ax = b, where A
is a n-by-n matrix of doubles and b is a n-by-1 matrix of doubles. Although
these functions can manage full matrices, it is mainly designed for sparse
matrices. One of the interesting point here is that the matrix-vector pro-
ducts or the preconditionning steps M\x can be performed either with full or
sparse matrices, or with callback functions. This flexibility makes the module
convenient to use in situations when the sparse matrices are not stored in
memory, since only the matrix-vector product (or the preconditionning step
M\x) is required. Moreover, we provide Matlab-compatible pcg, gmres and
qmr solvers :

– the order of the arguments are the same as in Matlab,
– the default values of the Matlab functions are the same as in Matlab,
– the headers of the callback functions are the same as in Matlab.

This contrasts with Scilab’s internal functions, where the two last points are
completely unsatisfied. Finally, we provide a complete test suite for these
functions, which are using robust argument checking.
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imsls bicg BIConjugate Gradient method
imsls bicgstab BIConjugate Gradient STABilized method
imsls pcg Conjugate Gradient method
imsls cgs Conjugate Gradient Squared method
imsls cheby CHEBYshev method
imsls gmres Generalized Minimal RESidual method
imsls jacobi JACOBI method
imsls qmr Quasi Minimal Residual method
imsls sor Successive Over-Relaxation method

Figure 16 – Main functions in the Imsls toolbox.

mtlb bicg BiConjugate Gradient method
mtlb bicgstab BiConjugate Gradient Stabilized method
mtlb cgs Conjugate Gradient Squared method
mtlb gmres Generalized Minimal residual method
mtlb pcg Conjugate Gradient method
mtlb qmr Quasi Minimal Residual method

Figure 17 – Compatibility functions in the Imsls toolbox.

The main functions are presented in the figure 16.
The Imsls toolbox also provides Matlab compatibility functions, which

are presented in the figure 17.
The imsls_gmres function finds x such that Ax = b. In the following

script, we create a 16-by-16 matrix of doubles. Although this matrix is sym-
metric, the imsls_gmres function can manage nonsymmetric matrices. Then
we define the expected result xe, and compute the right hand side b. Finally,
we call the imsls_gmres, which returns x.

A=imsls_makefish (4);

xe=(1:16) ’;

b=A*xe;

x = imsls_gmres(A,b)

The previous script produces the following output.

-->x = imsls_gmres(A,b)

x =

1.
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2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

The Imsls toolbox is available on Atoms :

http://atoms.scilab.org/toolboxes/imsls

To install this module, we can use the statement

atomsInstall("imsls")

and restart Scilab.
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