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Abstract

Most of the time, the mathematical formula is directly used in the Scilab
source code. But, in many algorithms, some additional work is performed,
which takes into account the fact that the computer does not process mathe-
matical real values, but performs computations with their floating point rep-
resentation. The goal of this article is to show that, in many situations, Scilab
is not naive and use algorithms which have been specifically tailored for float-
ing point computers. We analyze in this article the particular case of the
quadratic equation, the complex division and the numerical derivatives. In
each example, we show that the naive algorithm is not sufficiently accurate,
while Scilab implementation is much more robust.
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1 Introduction

1.1 An open-source document

This document is an open-source project. The LATEX sources are available on the
Scilab Forge:

http://forge.scilab.org/index.php/p/docscilabisnotnaive/

The LATEX sources are provided under the terms of the Creative Commons Attribution-
ShareAlike 3.0 Unported License:

http://creativecommons.org/licenses/by-sa/3.0

The Scilab scripts are provided on the Forge, inside the project, under the scripts

sub-directory. The scripts are available under the CeCiLL licence:

http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt

1.2 Introduction

As a practical example of the problem considered in this document, consider the
following numerical experiments. The following session is an example of a Scilab
session, where we compute the real number 0.1 by two different, but mathematically
equivalent ways.

-->format (25)
-->0.1
ans =

0.1000000000000000055511
-->1.0-0.9
ans =

0.0999999999999999777955
-->0.1 == 1.0 - 0.9
ans =
F

I guess that for a person who has never heard of these problems, this experiment
may be a shock. To get things clearer, let’s check that the sinus function is also
approximated in the sense that the value of sin(π) is not exactly zero.

-->format (25)
-->sin (0.0)
ans =

0.
-->sin(%pi)
ans =

0.0000000000000001224647

With symbolic computation systems, such as Maple[32], Mathematica[41] or
Maxima[2] for example, the calculations are performed with abstract mathematical
symbols. Therefore, there is no loss of accuracy, as long as no numerical evaluation
is performed. If a numerical solution is required as a rational number of the form p/q
where p and q are integers and q 6= 0, there is still no loss of accuracy. On the other
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hand, in numerical computing systems, such as Scilab[7], Matlab[33] or Octave[3]
for example, the computations are performed with floating point numbers. When a
numerical value is stored, it is generally associated with a rounding error.

The difficulty of numerical computations is generated by the fact that, while the
mathematics treat with real numbers, the computer deals with their floating point
representations. This is the difference between the naive, mathematical, approach,
and the numerical, floating-point, implementation.

In this article, we will not present the floating point arithmetic in detail. Instead,
we will show examples of floating point issues by using the following algebraic and
experimental approach.

1. First, we will derive the basic theory of a mathematical formula.

2. Then, we will implement it in Scilab and compare with the result given by
the equivalent function provided by Scilab. As we will see, some particular
cases do not work well with our formula, while the Scilab function computes
a correct result.

3. Finally, we will analyze the reasons of the differences.

Our numerical experiments will be based on Scilab.
In order to measure the accuracy of the results, we will use two different measures

of error: the relative error and the absolute error[20]. Assume that xc ∈ R is a
computed value and xe ∈ R is the expected (exact) value. We are looking for a
measure of the difference between these two real numbers. Most of the time, we use
the relative error

er =
|xc − xe|
|xe|

, (1)

where we assume that xe 6= 0. The relative error er is linked with the number
of significant digits in the computed value xc. For example, if the relative error
er = 10−6, then the number of significant digits is 6.

When the expected value is zero, the relative error cannot be computed, and we
then use instead the absolute error

ea = |xc − xe|. (2)

A practical way of checking the expected result of a computation is to compare
the formula computed ”by hand” with the result produced by a symbolic tool. Re-
cently, Wolfram has launched the http://www.wolframalpha.com website which
let us access to Mathematica with a classical web browser. Many examples in this
document have been validated with this tool.

In the following, we make a brief overview of floating point numbers used in
Scilab. Real variables in Scilab are stored in double precision floating point variables.
Indeed, Scilab uses the IEEE 754 standard so that real variables are stored with 64
bits floating point numbers, called doubles. The floating point number associated
with a given x ∈ R will be denoted by fl(x).

While the real numbers form a continuum, floating point numbers are both finite
and bounded. Not all real numbers can be represented by a floating point number.
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Indeed, there is a infinite number of reals, while there is a finite number of float-
ing point numbers. In fact, there are, at most, 264 different 64 bits floating point
numbers. This leads to roundoff, underflow and overflow.

The double floating point numbers are associated with a machine epsilon equal
to 2−52, which is approximately equal to 10−16. This parameter is stored in the %eps
Scilab variable. Therefore, we can expect, at best, approximately 16 significant
decimal digits. This parameter does not depend on the machine we use. Indeed, be
it a Linux or a Windows system, Scilab uses IEEE doubles. Therefore, the value of
the %eps variable is always the same in Scilab.

Negative normalized floating point numbers are in the range [−10308,−10−307]
and positive normalized floating point numbers are in the range [10−307, 10308]. The
limits given in the previous intervals are only decimal approximations. Any real
number greater than 10309 or smaller than −10309 is not representable as a double
and is stored with the ”infinite” value: in this case, we say that an overflow occurred.
A real which magnitude is smaller than 10−324 is not representable as a double and
is stored as a zero: in this case, we say that an underflow occurred.

The outline of this paper is the following. In the first section, we compute the
roots of a quadratic equation. In the second section, we compute the numerical
derivatives of a function. In the final section, we perform a numerically difficult
division, with complex numbers. The examples presented in this introduction are
presented in the appendix of this document.

2 Quadratic equation

In this section, we analyze the computation of the roots of a quadratic polynomial.
As we shall see, there is a whole world from the mathematical formulas to the im-
plementation of such computations. In the first part, we briefly report the formulas
which allow to compute the real roots of a quadratic equation with real coefficients.
We then present the naive algorithm based on these mathematical formulas. In the
second part, we make some experiments in Scilab and compare our naive algorithm
with the roots Scilab function. In the third part, we analyze why and how float-
ing point numbers must be taken into account when the roots of a quadratic are
required.

2.1 Theory

In this section, we present the mathematical formulas which allow to compute the
real roots of a quadratic polynomial with real coefficients. We chose to begin by
the example of a quadratic equation, because most of us exactly know (or think we
know) how to solve such an equation with a computer.

Assume that a, b, c ∈ R are given coefficients and a 6= 0. Consider the following
quadratic [4, 1, 5] equation:

ax2 + bx+ c = 0, (3)

where x ∈ R is the unknown.
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Let us define by ∆ = b2 − 4ac the discriminant of the quadratic equation. We
consider the mathematical solution of the quadratic equation, depending on the sign
of the discriminant ∆ = b2 − 4ac.

• If ∆ > 0, there are two real roots:

x− =
−b−

√
∆

2a
, (4)

x+ =
−b+

√
∆

2a
. (5)

• If ∆ = 0, there is one double root:

x± = − b

2a
. (6)

• If ∆ < 0, there are two complex roots:

x± =
−b
2a
± i
√
−∆

2a
. (7)

We now consider a simplified algorithm where we only compute the real roots of
the quadratic, assuming that ∆ > 0. This naive algorithm is presented in figure 1.

input : a, b, c
output: x−, x+

∆ := b2 − 4ac;
s :=

√
∆;

x− := (−b− s)/(2a);
x+ := (−b+ s)/(2a);

Algorithm 1: Naive algorithm to compute the real roots of a quadratic equation.
- We assume that ∆ > 0.

2.2 Experiments

In this section, we compare our naive algorithm with the roots function. We begin
by defining a function which naively implements the mathematical formulas. Then
we use our naive function on two particular examples. In the first example, we focus
on massive cancellation and in the second example, we focus on overflow problems.

The following Scilab function myroots is a straightforward implementation of
the previous formulas. It takes as input the coefficients of the quadratic, stored in
the vector variable p, and returns the two roots in the vector r.

function r=myroots(p)
c=coeff(p,0);
b=coeff(p,1);
a=coeff(p,2);
r(1)=(-b+sqrt(b^2-4*a*c))/(2*a);
r(2)=(-b-sqrt(b^2-4*a*c))/(2*a);

endfunction
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2.2.1 Massive cancellation

We analyze the rounding errors which are appearing when the discriminant of the
quadratic equation is such that b2 � 4ac. We consider the following quadratic
equation

εx2 + (1/ε)x− ε = 0 (8)

with ε > 0. The discriminant of this equation is ∆ = 1/ε2 + 4ε2. The two real
solutions of the quadratic equation are

x− =
−1/ε−

√
1/ε2 + 4ε2

2ε
, x+ =

−1/ε+
√

1/ε2 + 4ε2

2ε
. (9)

We are mainly interested in the case where the magnitude of ε is very small. The
roots are approximated by

x− ≈ −1/ε2, x+ ≈ ε2, (10)

when ε is close to zero. We now consider the limit of the two roots when ε→ 0. We
have

lim
ε→0

x− = −∞, lim
ε→0

x+ = 0. (11)

In the following Scilab script, we compare the roots computed by the roots

function and the roots computed by our naive function. Only the positive root
x+ ≈ ε2 is considered in this test. Indeed, the x− root is so that x− → −∞ in
both implementations. We consider the special case ε = 0.0001 = 10−4. We begin
by creating a polynomial with the poly function, which is given the coefficients of
the polynomial. The variable e1 contains the expected value of the positive root
x+ = ε2. Then we compute the roots r1 and r2 with the two functions roots and
myroots. We finally compute the relative errors error1 and error2.

p=poly ([ -0.0001 10000.0 0.0001] ,"x","coeff");
e1 = 1e-8;
roots1 = myroots(p);
r1 = roots1 (1);
roots2 = roots(p);
r2 = roots2 (1);
error1 = abs(r1-e1)/e1;
error2 = abs(r2-e1)/e1;
printf("Expected : %e\n", e1);
printf("Naive method : %e (error=%e)\n", r1,error1 );
printf("Scilab method : %e (error=%e)\n", r2, error2 );

The previous script produces the following output.

Expected : 1.000000e-008
Naive method : 9.094947e-009 (error =9.050530e-002)
Scilab method : 1.000000e-008 (error =1.654361e-016)

We see that the naive method produces a root which has no significant digit and
a relative error which is 14 orders of magnitude greater than the relative error of the
Scilab root.
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This behavior is explained by the fact that the expression for the positive root x+

given by the equality 5 is numerically evaluated as following. We first consider how
the discriminant ∆ = 1/ε2 + 4ε2 is computed. The term 1/ε2 is equal to 100000000
and the term 4ε2 is equal to 0.00000004. Therefore, the sum of these two terms is
equal to 100000000.000000045. Hence, the square root of the discriminant is√

1/ε2 + 4ε2 = 10000.000000000001818989. (12)

As we see, the first digits are correct, but the last digits are subject to rounding
errors. When the expression −1/ε+

√
1/ε2 + 4ε2 is evaluated, the following compu-

tations are performed :

− 1/ε+
√

1/ε2 + 4ε2 = −10000.0 + 10000.000000000001818989 (13)

= 0.0000000000018189894035 (14)

We see that the result is mainly driven by the cancellation of significant digits.
We may think that the result is extreme, but it is not. For example, consider the

case where we reduce further the value of ε down to ε = 10−11, we get the following
output :

Expected : 1.000000e-022
Naive method : 0.000000e+000 (error =1.000000e+000)
Scilab method : 1.000000e-022 (error =1.175494e-016)

The relative error is this time 16 orders of magnitude greater than the relative
error of the Scilab root. There is no significant decimal digit in the result. In fact,
the naive implementation computes a false root x+ even for a value of epsilon equal
to ε = 10−3, where the relative error is 7 orders of magnitude greater than the
relative error produced by the roots function.

2.2.2 Overflow

In this section, we analyse the overflow which appears when the discriminant of the
quadratic equation is such that b2−4ac is not representable as a double. We consider
the following quadratic equation

x2 + (1/ε)x+ 1 = 0 (15)

with ε > 0. We especially consider the case ε→ 0. The discriminant of this equation
is ∆ = 1/ε2 − 4. Assume that the discriminant is positive. Therefore, the roots of
the quadratic equation are

x− =
−1/ε−

√
1/ε2 − 4

2
, x+ =

−1/ε+
√

1/ε2 − 4

2
. (16)

These roots are approximated by

x− ≈ −1/ε, x+ ≈ −ε, (17)

when ε is close to zero. We now consider the limit of the two roots when ε→ 0. We
have

lim
ε→0

x− = −∞, lim
ε→0

x+ = 0−. (18)
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To create a difficult case, we search ε so that 1/ε2 > 10308, because we know that 10308

is the maximum representable double precision floating point number. Therefore,
we expect that something should go wrong in the computation of the expression√

1/ε2 − 4. We choose ε = 10−155.
In the following script, we compare the roots computed by the roots function

and our naive implementation.

e=1.e-155
a = 1;
b = 1/e;
c = 1;
p=poly([c b a],"x","coeff");
expected = [-e;-1/e];
roots1 = myroots(p);
roots2 = roots(p);
error1 = abs(roots1 -expected )/norm(expected );
error2 = abs(roots2 -expected )/norm(expected );
printf("Expected : %e %e\n", expected (1), expected (2));
printf("Naive method : %e %e (error=%e %e)\n", ...

roots1 (1), roots1 (2), error1 (1), error1 (2));
printf("Scilab method : %e %e (error=%e %e)\n", ...

roots2 (1), roots2 (2), error2 (1), error2 (2));

The previous script produces the following output.

Expected : -1.000000e-155 -1.000000e+155
Naive method : Inf Inf (error=Nan Nan)
Scilab method : -1.000000e-155 -1.000000e+155

(error =0.000000e+000 0.000000e+000)

In this case, the discriminant ∆ = b2−4ac has been evaluated as 1/ε2−4, which
is approximately equal to 10310. This number cannot be represented in a double
precision floating point number. It therefore produces the IEEE Infinite number,
which is displayed by Scilab as Inf. The Infinite number is associated with an
algebra and functions can perfectly take this number as input. Therefore, when the
square root function must compute

√
∆, it produces again Inf. This number is then

propagated into the final roots.

2.3 Explanations

In this section, we suggest robust methods to compute the roots of a quadratic
equation.

The methods presented in this section are extracted from the quad routine of the
RPOLY algorithm by Jenkins and Traub [24, 23]. This algorithm is used by Scilab
in the roots function, where a special case is used when the degree of the equation
is equal to 2, i.e. a quadratic equation.

2.3.1 Properties of the roots

In this section, we present elementary results, which will be used in the derivation
of robust floating point formulas of the roots of the quadratic equation.

Let us assume that the quadratic equation 3, with real coefficients a, b, c ∈ R
and a > 0 has a positive discriminant ∆ = b2− 4ac. Therefore, the two real roots of
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the quadratic equation are given by the equations 4 and 5. We can prove that the
sum and the product of the roots satisfy the equations

x− + x+ =
−b
a
, x−x+ =

c

a
. (19)

Therefore, the roots are the solution of the normalized quadratic equation

x2 − (x− + x+)x+ x−x+ = 0. (20)

Another transformation leads to an alternative form of the roots. Indeed, the
original quadratic equation can be written as a quadratic equation of the unknown
1/x. Consider the quadratic equation 3 and divide it by 1/x2, assuming that x 6= 0.
This leads to the equation

c(1/x)2 + b(1/x) + a = 0, (21)

where we assume that x 6= 0. The two real roots of the quadratic equation 21 are

x− =
2c

−b+
√
b2 − 4ac

, (22)

x+ =
2c

−b−
√
b2 − 4ac

. (23)

The expressions 22 and 23 can also be derived directly from the equations 4 and
5. For that purpose, it suffices to multiply their numerator and denominator by
−b+

√
b2 − 4ac.

2.3.2 Floating-Point implementation : overview

The numerical experiments presented in sections 2.2.1 and 2.2.2 suggest that the
floating point implementation must deal with two different problems:

• massive cancellation when b2 � 4ac because of the cancellation of the terms
−b and ±

√
b2 − 4ac which may have opposite signs,

• overflow in the computation of the square root of the discriminant
√
±(b2 − 4ac)

when b2 − 4ac is not representable as a floating point number.

The cancellation problem occurs only when the discriminant is positive, i.e. only
when there are two real roots. Indeed, the cancellation will not appear when ∆ < 0,
since the complex roots do not use the sum −b ±

√
b2 − 4ac. When ∆ = 0, the

double real root does not cause any trouble. Therefore, we must take into account
for the cancellation problem only in the equations 4 and 5.

On the other hand, the overflow problem occurs whatever the sign of the discrim-
inant but does not occur when ∆ = 0. Therefore, we must take into account for this
problem in the equations 4, 5 and 7. In section 2.3.3, we focus on the cancellation
error while the overflow problem is addressed in section 2.3.4.
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2.3.3 Floating-Point implementation : fixing massive cancellation

In this section, we present the computation of the roots of a quadratic equation with
protection against massive cancellation.

When the discriminant ∆ is positive, the massive cancellation problem can be
split in two cases:

• if b < 0, then −b −
√
b2 − 4ac may suffer of massive cancellation because −b

is positive and −
√
b2 − 4ac is negative,

• if b > 0, then −b +
√
b2 − 4ac may suffer of massive cancellation because −b

is negative and
√
b2 − 4ac is positive.

Therefore,

• if b > 0, we should use the expression −b−
√
b2 − 4ac,

• if b < 0, we should use the expression −b+
√
b2 − 4ac.

The solution consists in a combination of the following expressions of the roots given
by, on one hand the equations 4 and 5, and, on the other hand the equations 22 and
23. We pick the formula so that the sign of b is the same as the sign of the square
root. The following choice allow to solve the massive cancellation problem:

• if b < 0, then compute x− from 22, else (if b > 0), compute x− from 4,

• if b < 0, then compute x+ from 5, else (if b > 0), compute x+ from 23.

We can also consider the modified Fagnano formulas

x1 = − 2c

b+ sgn(b)
√
b2 − 4ac

, (24)

x2 = −b+ sgn(b)
√
b2 − 4ac

2a
, (25)

where the sign function is defined by

sgn(b) =

{
1, if b ≥ 0,
−1, if b < 0.

(26)

The roots x1,2 correspond to the roots x+,−. Indeed, on one hand, if b < 0, x1 = x−
and if b > 0, x1 = x+. On the other hand, if b < 0, x2 = x+ and if b > 0, x2 = x−.

Moreover, we notice that the division by two (and the multiplication by 2) is exact
with floating point numbers so these operations cannot be a source of problem. But
it is interesting to use b/2, which involves only one division, instead of the three
multiplications 2 ∗ c, 2 ∗ a and 4 ∗ a ∗ c. This leads to the following expressions of
the real roots

x1 = − c

(b/2) + sgn(b)
√

(b/2)2 − ac
, (27)

x2 = −
(b/2) + sgn(b)

√
(b/2)2 − ac

a
. (28)
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Therefore, the two real roots can be computed by the following sequence of compu-
tations:

b′ := b/2, ∆′ := b′2 − ac, (29)

h := −
(
b′ + sgn(b)

√
∆′
)

(30)

x1 :=
c

h
, x2 :=

h

a
. (31)

In the case where the discriminant ∆′ := b′2 − ac is negative, the two complex
roots are

x1 = −b
′

a
− i
√
ac− b′2
a

, x2 = −b
′

a
+ i

√
ac− b′2
a

. (32)

A more robust algorithm, based on the previous analysis is presented in figure 2.
By comparing 1 and 2, we can see that the algorithms are different in many points.

2.3.4 Floating-Point implementation : fixing overflow problems

The remaining problem is to compute the square root of the discriminant
√
±(b′2 − ac)

without creating unnecessary overflows. In order to simplify the discussion, we focus
on the computation of

√
b′2 − ac.

Obviously, the problem occur for large values of b′. Notice that a (very) small
improvement has already been done. Indeed, we have the inequality |b′| = |b|/2 < |b|
so that overflows are twice less likely to occur. The current upper bound for |b′|
is 10154, which is associated with b

′2 ≤ 10308, the maximum double value before
overflow. The goal is therefore to increase the possible range of values of b′ without
generating unnecessary overflows.

Consider the situation when b′ is large in magnitude with respect to a and c. In
that case, notice that we first square b′ to get b

′2 and then compute the square root√
b′2 − ac. Hence, we can factor the expression by b

′2 and move this term outside
the square root, which makes the term |b′| appear. This method allows to compute
the expression

√
b′2 − ac, without squaring b′ when it is not necessary.

In the general case, we use the fact that the term b′2− ac can be evaluated with
the two following equivalent formulas:

b′2 − ac = b′2 [1− (a/b′)(c/b′)] , (33)

b′2 − ac = c [b′(b′/c)− a] . (34)

The goal is then to compute the square root s =
√
b′2 − ac.

• If |b′| > |c| > 0, then the equation 33 involves the expression 1− (a/b′)(c/b′).
The term 1 − (a/b′)(c/b′) is so that no overflow is possible since |c/b′| < 1
(the overflow problem occurs only when b is large in magnitude with respect
to both a and c). In this case, we use the expression

e = 1− (a/b′)(c/b′), (35)
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input : a, b, c
output: xR−, xI−, xR+, xI+
if a = 0 then

if b = 0 then
xR− := 0 , xI− := 0 ;
xR+ := 0 , xI+ := 0 ;

else
xR− := −c/b , xI− := 0 ;
xR+ := 0 , xI+ := 0 ;

end

else
b′ := b/2 ;
∆ := b′2 − ac ;
if ∆ < 0 then

s :=
√
−∆ ;

xR− := −b′/a , xI− := −s/a ;
xR+ := xR− , xI+ := −xI1 ;

else if ∆ = 0 then
x− := −b′/a , xI− := 0 ;
x+ := x2 , xI+ := 0 ;

else

s :=
√

∆ ;
if b > 0 then

g := 1 ;
else

g := −1 ;
end
h := −(b′ + g ∗ s) ;
xR− := c/h , xI− := 0 ;
xR+ := h/a , xI+ := 0 ;

end

end
Algorithm 2: A more robust algorithm to compute the roots of a quadratic
equation. This algorithm takes as input arguments the real coefficients a, b, c and
returns the real and imaginary parts of the two roots, i.e. returns xR−, xI−, xR+, xI+.

13



and compute

s = ±|b′|
√
|e|. (36)

In the previous equation, we use the sign + when e is positive and the sign -
when e is negative.

• If |c| > |b′| > 0, then the equation 34 involves the expression b′(b′/c) − a.
The term b′(b′/c)− a should limit the possible overflows since |b′/c| < 1. This
implies that |b′(b′/c)| < |b′|. (There is still a possibility of overflow, for example
in the case where b′(b′/c) is near, but under, the overflow limit and a is large.)
Therefore, we use the expression

e = b′(b′/c)− a, (37)

and compute

s = ±
√
|c|
√
|e|. (38)

In the previous equation, we use the sign + when e is positive and the sign -
when e is negative.

In both equations 36 and 38, the parenthesis must be strictly used. This property
is ensured by the IEEE standard and by the Scilab language. This normalization
method are similar to the one used by Smith in the algorithm for the division of
complex numbers [44] and which will be reviewed in the next section.

2.3.5 Conditioning of the problem

The conditioning of the problem may be evaluated with the computation of the
partial derivatives of the roots of the equations with respect to the coefficients. These
partial derivatives measure the sensitivity of the roots of the equation with respect
to small errors which might by associated with the coefficients of the quadratic
equations. In the following, we assume that a 6= 0.

First, assume that the discriminant is positive, i.e. assume that ∆ > 0. There-
fore, the roots given by the equations 4 and 5 can be directly differentiated. This
leads to

∂x−
∂a

= c
a
√

∆
+ b+

√
∆

2a2 , ∂x+

∂a
= − c

a
√

∆
+ b−

√
∆

2a2

∂x−
∂b

= −1−b/
√

∆
2a

, ∂x+

∂b
= −1+b/

√
∆

2a
∂x−
∂c

= 1√
∆
, ∂x+

∂c
= − 1√

∆
.

(39)

Second, if the discriminant is zero, the partial derivatives of the double real root
are the following :

∂x±
∂a

=
b

2a2
,

∂x±
∂b

=
−1

2a
,

∂x±
∂c

= 0. (40)

In both cases, we see that when the coefficient a converges toward zero, some
of the partial derivatives are converging toward ±∞. For example, if ∆ > 0, then

14



lima→0
∂x−
∂a
→ ±∞. We also see that behavior when the discriminant converges

toward zero. This implies that, in the case where a or ∆ are small, a small change
in the coefficient is associated to a large change in the roots. This is the definition
of an ill-conditioned problem.

We can relate this ill-conditioning problem to the eigenvalue problem of a square
matrix A. Indeed, it is a well-known result that, when A is non-normal, it may
happen that small changes in A can induce large changes in the eigenvalues[19],
chapter 7, ”The Unsymmetric Eigenvalue Problem”. The eigenvalue problem and
the roots of a quadratic equation are related by the fact that the eigenvalues are the
roots of the characteristic polynomial. Moreover, a very general method to find the
roots of a polynomial is to find the eigenvalues of its companion matrix.

2.4 References

The 1966 technical report by G. Forsythe [12] presents the floating point system
and the possible large error in using mathematical algorithms blindly. An accurate
way of solving a quadratic is outlined. A few general remarks are made about
computational mathematics.

The 1991 paper by Goldberg [18] is a general presentation of the floating point
system and its consequences. It begins with background on floating point represen-
tation and rounding errors, continues with a discussion of the IEEE floating point
standard and concludes with examples of how computer system builders can bet-
ter support floating point. The section 1.4, ”Cancellation” specifically consider the
computation of the roots of a quadratic equation.

We can also read the numerical experiments performed by Nievergelt in [38].
The Numerical Recipes [39], chapter 5, section 5.6, ”Quadratic and Cubic Equa-

tions” present the elementary theory for a floating point implementation of the
quadratic and cubic equations.

Other references include William Kahan [26].

2.5 Exercises

Exercise 2.1 (Roots of the normalized quadratic equation) We consider the normalized
quadratic equation:

x2 + ax+ b = 0, (41)

where a, b ∈ R are given coefficients and x ∈ R is the unknown. Prove that the roots of the
normalized quadratic equation 41 are the following. Let us define δ = a2

4 − b.
• If δ > 0, there are two real roots,

x± = −a
2
±
√
a2

4
− b (42)

• If δ = 0, there is one double real root,

x = −a
2
. (43)

• If δ < 0, there are two complex roots,

x± = −a
2
± i
√
b− a2

4
(44)
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Exercise 2.2 (Roots of the quadratic equation) We consider the quadratic equation 3 where
a, b, c ∈ R are given coefficients and x ∈ R is the unknown. We assume that a 6= 0. Prove that the
roots of the quadratic equation 3 are given by the equations 4, 5, 6 and 7.

Exercise 2.3 (Properties of the roots) Prove the equations 19.

Exercise 2.4 (Inverted roots) Based on the equations 4 and 5, prove directly the equations 22
and 23, i.e. prove that

x− =
−b−

√
∆

2a
=

2c
−b+

√
b2 − 4ac

, (45)

x+ =
−b+

√
∆

2a
=

2c
−b−

√
b2 − 4ac

. (46)

Exercise 2.5 (Expansion of
√

1 + x near x = 0) Prove that, when x is in the neighborhood of
zero, we have

√
1 + x = 1 +

1
2
x− 1

8
x2 +

1
16
x3 +O(x4). (47)

Exercise 2.6 (Roots of a quadratic equation #1) Prove the approximations 10.

Exercise 2.7 (Roots of a quadratic equation #2) Prove the approximations 17.

2.6 Answers to exercises

Answer of Exercise 2.1 (Roots of the normalized quadratic equation) We use the following
change of variable

x = t+ λ (48)

where t ∈ R is the unknown and λ ∈ R is a parameter. This parameter will be tuned so that the
linear term in the quadratic equation is zero. We plug the change of variable 48 into the equation
41 and get

x2 + ax+ b = (t+ λ)2 + a(t+ λ) + b (49)
= t2 + 2tλ+ λ2 + at+ aλ+ b (50)
= 0. (51)

We can organize the previous expression by decreasing powers of the unknown t. Hence, the
unknown t ∈ R must be a solution of the equation

t2 + (a+ 2λ)t+ (λ2 + aλ+ b) = 0 (52)

The linear term is zero if

a+ 2λ = 0. (53)

Therefore, we choose to define λ by the equation

λ = −a
2
. (54)

Hence, the change of variable is

x = t− a

2
. (55)

The constant term in the equation 52 can be simplified into

λ2 + aλ+ b =
(
−a

2

)2

+ a
(
−a

2

)
+ b (56)

=
a2

4
− a2

2
+ b (57)

= −a
2

4
+ b. (58)
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The equation 52 is now simplified and the unknown t must be a root of the equation

t2 + (b− a2

4
) = 0. (59)

The previous equation can be expressed as

t2 = δ (60)

where δ is defined by

δ =
a2

4
− b. (61)

The roots of the quadratic equation 60 can be found depending on the sign of δ.

• If δ > 0, there are two real roots,

t± = ±
√
δ. (62)

The roots x± can then be computed by using the change of variable 55. This leads to

x± = t± −
a

2
(63)

= −a
2
±
√
δ (64)

= −a
2
±
√
a2

4
− b (65)

• If δ = 0, there is one double root

t± = 0. (66)

The change of variable 55 leads to

x± = −a
2
. (67)

• If δ < 0, there are two complex roots,

t± = ±i
√
−δ (68)

and the change of variable 55 leads to

x± = −a
2
± i
√
−δ (69)

= −a
2
± i
√
b− a2

4
. (70)

We have analyzed the roots depending on the sign of the discriminant δ and the proof is complete.

Answer of Exercise 2.2 (Roots of the quadratic equation) We use the result of the exercise
2.1. We consider the quadratic equation 3 where a, b, c ∈ R are given coefficients and x ∈ R is the
unknown. We assume that a 6= 0. Therefore, we can divide the equation 3 by a and get

x2 + a′x+ b′ = 0, (71)

where a′ = b
a and b′ = c

a . The discriminant is

δ =
a′2

4
− b′ (72)

=
(b/a)2

4
− (c/a) (73)

=
b2

4a2
− c

a
(74)

=
b2 − 4ac

4a2
. (75)
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We define ∆ by the equation ∆ = b2 − 4ac. Therefore, we have δ = ∆
4a2 . Since 4a2 > 0, the signs

of δ and ∆ are the same and δ = 0 if and only if ∆ = 0.
We plug the previous definitions of a′ and b′ into the roots of the normalized equation given

by exercise 2.1 and get the following result.

• If ∆ > 0, there are two real roots:

x± = −a
′

2
±
√
δ (76)

= − b

2a
±
√

∆
2a

(77)

=
−b±

√
∆

2a
(78)

which proves the equations 4 and 5.

• If ∆ = 0, there is one double root:

x± = −a
′

2
(79)

= − b

2a
. (80)

We have proved the equation 6.

• If ∆ < 0, there are two complex roots:

x± = −a
′

2
± i
√
−δ (81)

= − b

2a
± i
√
−∆
2a

(82)

which proves the equation 7.

Answer of Exercise 2.3 (Properties of the roots) Let us prove the equations 19 in the three
cases ∆ > 0, ∆ = 0 and ∆ < 0. First, assume that ∆ > 0. Then, by the equations 4 and 5, the
sum of the roots is

x− + x+ =
−b−

√
∆

2a
+
−b+

√
∆

2a
(83)

=
−2b
2a

(84)

=
−b
a
. (85)

The product of the roots is

x−.x+ =

(
−b−

√
∆

2a

)(
−b+

√
∆

2a

)
(86)

=
b2 −∆

4a2
(87)

=
b2 − (b2 − 4ac)

4a2
(88)

=
4ac
4a2

(89)

=
c

a
. (90)
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Second, assume that ∆ = 0. By the equation 6, the sum of the roots is

x− + x+ =
−b
2a

+
−b
2a

(91)

=
−b
a
. (92)

The product of the roots is

x−.x+ =
(
−b
2a

)(
−b
2a

)
(93)

=
b2

4a2
. (94)

But the equality ∆ = 0 implies b2 = 4ac. We plug this last equality in the equation 94, and we
find

x−.x+ =
4ac
4a2

(95)

=
c

a
. (96)

Finally, assume that ∆ < 0. Then, by the equations 7, the sum of the roots is

x− + x+ =
−b
2a
− i
√
−∆
2a

+
−b
2a

+ i

√
−∆
2a

(97)

=
−2b
2a

(98)

=
−b
a
. (99)

The product of the roots is

x−.x+ =
(
−b
2a
− i
√
−∆
2a

)(
−b
2a

+ i

√
−∆
2a

)
(100)

=
(
−b
2a

)2

+
(√
−∆
2a

)2

(101)

=
b2

4a2
+
−∆
4a2

(102)

=
b2

4a2
+

4ac− b2

4a2
(103)

=
4ac
4a2

(104)

=
c

a
. (105)

The three cases ∆ > 0, ∆ = 0 and ∆ < 0 have been considered so that the proof is complete.

Answer of Exercise 2.4 (Inverted roots) Based on the equations 4 and 5, let us prove
directly the equations 22 and 23, i.e. let us prove that

x− =
−b−

√
∆

2a
=

2c
−b+

√
b2 − 4ac

, (106)

x+ =
−b+

√
∆

2a
=

2c
−b−

√
b2 − 4ac

. (107)
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First, we multiply the numerator and the denominator of x− by −b+
√

∆. This leads to

x− =
−b−

√
∆

2a
· −b+

√
∆

−b+
√

∆
(108)

=
(−b)2 − (

√
∆)2

2a(−b+
√

∆)
(109)

=
b2 −∆

2a(−b+
√

∆)
(110)

=
b2 − (b2 − 4ac)
2a(−b+

√
∆)

(111)

=
4ac

2a(−b+
√

∆)
(112)

=
2c

−b+
√

∆
. (113)

Second, we multiply the numerator and the denominator of x+ by −b−
√

∆. This leads to

x+ =
−b+

√
∆

2a
· −b−

√
∆

−b−
√

∆
(114)

=
(−b)2 − (

√
∆)2

2a(−b−
√

∆)
(115)

=
b2 −∆

2a(−b−
√

∆)
(116)

=
b2 − (b2 − 4ac)
2a(−b−

√
∆)

(117)

=
4ac

2a(−b−
√

∆)
(118)

=
2c

−b−
√

∆
. (119)

This proves the equalities 22 and 23.

Answer of Exercise 2.5 (Expansion of
√

1 + x near x = 0) Assume that f is a continuously
differentiable function. By Taylor’s theorem, we have

f(x+ h) = f(x) + hf ′(x) +
1
2
h2f ′′(x) +

1
6
h3f ′′′(x) +O(h4). (120)

We use the Taylor’s expansion 120 with f(x) =
√
x in the neighborhood of x = 1. The derivatives

of the function f are

f ′(x) =
1
2
x−

1
2 , f ′′(x) = −1

4
x−

3
2 , f ′′′(x) =

3
8
x−

5
2 , (121)

so that

f(1) = 1, f ′(1) =
1
2
, f ′′(1) = −1

4
, f ′′′(1) =

3
8
. (122)

The Taylor expansion 120 therefore implies

√
1 + h = 1 + h · 1

2
+

1
2
h2 ·

(
−1

4

)
+

1
6
h3 · 3

8
+O(h4), (123)

= 1 +
1
2
h− 1

8
h2 +

1
16
h3 +O(h4). (124)

The previous equality proves the equality 47 and concludes the proof.
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Answer of Exercise 2.6 (Roots of a quadratic equation #1 ) Let us prove the approximations
10. The two real solutions of the quadratic equation 8 are

x− =
−1/ε−

√
1/ε2 + 4ε2

2ε
, x+ =

−1/ε+
√

1/ε2 + 4ε2

2ε
. (125)

Let us prove that

x− ≈ −1/ε2, x+ ≈ ε2. (126)

Based on the Taylor expansion 47, we can simplify the expression
√

1/ε2 + 4ε2. Indeed, we have

√
1/ε2 + 4ε2 =

√
1 + 4ε4

ε2
(127)

=
√

1 + 4ε4

ε
(128)

By the equation 47, we have√
1 + 4ε4 = 1 +

1
2

(4ε4)− 1
8

(4ε4)2 +O(ε12) (129)

= 1 + 2ε4 − 2ε8 +O(ε12). (130)

We divide the previous equation by ε and get√
1/ε2 + 4ε2 =

1
ε

+ 2ε3 − 2ε7 +O(ε11). (131)

This implies

− 1/ε−
√

1/ε2 + 4ε2 = −1
ε
− 1
ε
− 2ε3 + 2ε7 +O(ε11), (132)

= −2
ε
− 2ε3 +O(ε7), (133)

−1/ε+
√

1/ε2 + 4ε2 = −1
ε

+
1
ε

+ 2ε3 − 2ε7 +O(ε11) (134)

= 2ε3 − 2ε7 +O(ε11). (135)

We notice that the term 1
ε has been canceled in the previous calculation. This cancelation generates

the rounding error which is the topic of the associated numerical experiment. We divide the
previous equations by 2ε and finally get

x− = − 1
ε2
− ε2 +O(ε6), (136)

x+ = ε2 − ε6 +O(ε10). (137)

The two previous equations directly imply the approximations 126, when we consider that ε is close
to zero.

Answer of Exercise 2.7 (Roots of a quadratic equation #2 ) Let us prove the approximations
10. The two real solutions of the quadratic equation 15 are

x− =
−1/ε−

√
1/ε2 − 4

2
, x+ =

−1/ε+
√

1/ε2 − 4
2

. (138)

Let us prove that

x− ≈ −1/ε, x+ ≈ −ε. (139)

Based on the Taylor expansion 47, we can simplify the expression
√

1/ε2 − 4. Indeed, we have

√
1/ε2 − 4 =

√
1− 4ε2

ε2
(140)

=
√

1− 4ε2

ε
. (141)
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Therefore, √
1− 4ε2 = 1 +

1
2

(−4ε2)− 1
8

(−4ε2)2 +O(ε6) (142)

= 1− 2ε2 − 1
2
ε4 +O(ε6). (143)

By equation 141, the previous equation can be divided by ε, which leads to√
1/ε2 − 4 =

1
ε
− 2ε− 1

2
ε3 +O(ε5). (144)

We now compute the expressions which appear in the calculation of the roots x− and x+. The
previous equation leads to

− 1
ε
−
√

1/ε2 − 4 = −1
ε
− 1
ε

+ 2ε+
1
2
ε3 +O(ε5), (145)

= −2
ε

+ 2ε+O(ε3), (146)

−1
ε

+
√

1/ε2 − 4 = −1
ε

+
1
ε
− 2ε− 1

2
ε3 +O(ε5), (147)

= −2ε− 1
2
ε3 +O(ε5). (148)

We divide the two previous equations by 2 and finally get:

x− = −1
ε

+ ε+O(ε3), (149)

x+ = −ε− 1
4
ε3 +O(ε5). (150)

The previous equations imply the approximations 139, when we consider that ε is close to zero.

3 Numerical derivatives

In this section, we analyze the computation of the numerical derivative of a given
function.

In the first part, we briefly report the first order forward formula, which is based
on the Taylor theorem. We then present the naive algorithm based on these math-
ematical formulas. In the second part, we make some experiments in Scilab and
compare our naive algorithm with the derivative Scilab function. In the third
part, we analyze why and how floating point numbers must be taken into account
when we compute numerical derivatives.

3.1 Theory

The basic result is the Taylor formula with one variable [22]. Assume that x ∈ R is
a given number and h ∈ R is a given step. Assume that f : R → R is a two times
continuously differentiable function. Therefore,

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +O(h3). (151)
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We immediately get the forward difference which approximates the first derivate at
order 1

f ′(x) =
f(x+ h)− f(x)

h
+
h

2
f ′′(x) +O(h2). (152)

The naive algorithm to compute the numerical derivate of a function of one
variable is presented in figure 3.

input : x, h
output: f ′(x)
f ′(x) := (f(x+ h)− f(x))/h;

Algorithm 3: Naive algorithm to compute the numerical derivative of a function
of one variable.

3.2 Experiments

The following Scilab function myfprime is a straightforward implementation of the
previous algorithm.

function fp = myfprime(f,x,h)
fp = (f(x+h) - f(x))/h;

endfunction

In our experiments, we will compute the derivatives of the square function f(x) =
x2, which is f ′(x) = 2x. The following Scilab function myfunction computes the
square function.

function y = myfunction (x)
y = x*x;

endfunction

The (naive) idea is that the computed relative error is small when the step h is
small. Because small is not a priori clear, we take h = 10−16 as a ”good” candidate
for a small double.

The derivative function allows to compute the Jacobian and the Hessian matrix
of a given function. Moreover, we can use formulas of order 1, 2 or 4. The deriva-

tive function has been designed by Rainer von Seggern and Bruno Pinçon. The
order 1 formula is the forward numerical derivative that we have already presented.

In the following script, we compare the computed relative error produced by
our naive method with step h = 10−16 and the derivative function with default
optimal step. We compare the two methods for the point x = 1.

x = 1.0;
fpref = derivative(myfunction ,x,order =1);
e = abs(fpref -2.0)/2.0;
mprintf("Scilab f’’=%e, error=%e\n", fpref ,e);
h = 1.e-16;
fp = myfprime(myfunction ,x,h);
e = abs(fp -2.0)/2.0;
mprintf("Naive f’’=%e, h=%e, error=%e\n", fp,h,e);

The previous script produces the following output.
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Scilab f ’=2.000000e+000, error =7.450581e-009
Naive f ’=0.000000e+000, h=1.000000e-016, error =1.000000e+000

Our naive method seems to be inaccurate and has no significant decimal digit.
The Scilab function, instead, has 9 significant digits.

Since our faith is based on the truth of the mathematical theory, some deeper
experiments must be performed. We make the following numerical experiment: we
take the initial step h = 1.0 and divide h by 10 at each step of a loop made of 20
iterations.

x = 1.0;
fpref = derivative(myfunction ,x,order =1);
e = abs(fpref -2.0)/2.0;
mprintf("Scilab f’’=%e, error=%e\n", fpref ,e);
h = 1.0;
for i=1:20

h=h/10.0;
fp = myfprime(myfunction ,x,h);
e = abs(fp -2.0)/2.0;
mprintf("Naive f’’=%e, h=%e, error=%e\n", fp,h,e);

end

The previous script produces the following output.

Scilab f ’=2.000000e+000, error =7.450581e-009
Naive f ’=2.100000e+000, h=1.000000e-001, error =5.000000e-002
Naive f ’=2.010000e+000, h=1.000000e-002, error =5.000000e-003
Naive f ’=2.001000e+000, h=1.000000e-003, error =5.000000e-004
Naive f ’=2.000100e+000, h=1.000000e-004, error =5.000000e-005
Naive f ’=2.000010e+000, h=1.000000e-005, error =5.000007e-006
Naive f ’=2.000001e+000, h=1.000000e-006, error =4.999622e-007
Naive f ’=2.000000e+000, h=1.000000e-007, error =5.054390e-008
Naive f ’=2.000000e+000, h=1.000000e-008, error =6.077471e-009
Naive f ’=2.000000e+000, h=1.000000e-009, error =8.274037e-008
Naive f ’=2.000000e+000, h=1.000000e-010, error =8.274037e-008
Naive f ’=2.000000e+000, h=1.000000e-011, error =8.274037e-008
Naive f ’=2.000178e+000, h=1.000000e-012, error =8.890058e-005
Naive f ’=1.998401e+000, h=1.000000e-013, error =7.992778e-004
Naive f ’=1.998401e+000, h=1.000000e-014, error =7.992778e-004
Naive f ’=2.220446e+000, h=1.000000e-015, error =1.102230e-001
Naive f ’=0.000000e+000, h=1.000000e-016, error =1.000000e+000
Naive f ’=0.000000e+000, h=1.000000e-017, error =1.000000e+000
Naive f ’=0.000000e+000, h=1.000000e-018, error =1.000000e+000
Naive f ’=0.000000e+000, h=1.000000e-019, error =1.000000e+000
Naive f ’=0.000000e+000, h=1.000000e-020, error =1.000000e+000

We see that the relative error begins by decreasing, gets to a minimum and
then increases. Obviously, the optimum step is approximately h = 10−8, where the
relative error is approximately er = 6.10−9. We should not be surprised to see that
Scilab has computed a derivative which is near the optimum.

3.3 Explanations

In this section, we make reasonable assumptions for the expression of the total error
and compute the optimal step of a forward difference formula. We extend our work
to the centered two points formula.
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3.3.1 Floating point implementation

The first source of error is obviously the truncation error Et(h) = h|f ′′(x)|/2, due
to the limited Taylor expansion.

The other source of error is generated by the roundoff errors in the function eval-
uation of the formula (f(x+h)− f(x))/h. Indeed, the floating point representation
of the function value at point x is

fl(f(x)) = (1 + e(x))f(x), (153)

where the relative error e depends on the the current point x. We assume here that
the relative error e is bounded by the product of a constant c > 0 and the machine
precision r. Furthermore, we assume here that the constant c is equal to one. We
may consider other rounding errors sources, such as the error in the sum x+ h, the
difference f(x+h)−f(x) or the division (f(x+h)−f(x))/h. But all these rounding
errors can be neglected for they are not, in general, as large as the roundoff error
generated by the function evaluation. Hence, the roundoff error associated with the
function evaluation is Er(h) = r|f(x)|/h.

Therefore, the total error associated with the forward finite difference is bounded
by

E(h) =
r|f(x)|
h

+
h

2
|f ′′(x)|. (154)

The error is then the sum of a term which is a decreasing function of h and a
term which an increasing function of h. We consider the problem of finding the step
h which minimizes the error E(h). The total error E(h) is minimized when its first
derivative is zero. The first derivative of the function E is

E ′(h) = −r|f(x)|
h2

+
1

2
|f ′′(x)|. (155)

The second derivative of E is

E ′′(h) = 2
r|f(x)|
h3

. (156)

If we assume that f(x) 6= 0, then the second derivative E ′′(h) is strictly positive,
since h > 0 (i.e. we consider only non-zero steps). Hence, there is only one global
solution of the minimization problem. This first derivative is zero if and only if

− r|f(x)|
h2

+
1

2
|f ′′(x)| = 0 (157)

Therefore, the optimal step is

h =

√
2r|f(x)|
|f ′′(x)|

. (158)

Let us make the additional assumption

2|f(x)|
|f ′′(x)|

≈ 1. (159)
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Then the optimal step is

h =
√
r, (160)

where the error is

E(h) = 2
√
r. (161)

With double precision floating point numbers, we have r = 10−16 and we get
h = 10−8 and E(h) = 2.10−8. Under our assumptions on f and on the form of the
total error, this is the minimum error which is achievable with a forward difference
numerical derivate.

We can extend the previous method to the first derivate computed by a centered
2 points formula. We can prove that

f ′(x) =
f(x+ h)− f(x− h)

2h
+
h2

6
f ′′′(x) +O(h3). (162)

We can apply the same method as previously and, under reasonable assumptions
on f and the form of the total error, we get that the optimal step is h = r1/3,
which corresponds to the total error E = 2r2/3. With double precision floating
point numbers, this corresponds to h ≈ 10−5 and E ≈ 10−10.

3.3.2 Robust algorithm

A more robust algorithm to compute the numerical derivate of a function of one
variable is presented in figure 4.

h :=
√
r;

f ′(x) := (f(x+ h)− f(x))/h;
Algorithm 4: A more robust algorithm to compute the numerical derivative of a
function of one variable.

3.4 One more step

In this section, we analyze the behavior of the derivative function when the point
x is either large in magnitude, small or close to zero. We compare these results
with the numdiff function, which does not use the same step strategy. As we are
going to see, both functions performs the same when x is near 1, but performs very
differently when x is large or small.

The derivative function uses the optimal step based on the theory we have
presented. But the optimal step does not solve all the problems that may occur in
practice, as we are going to see.

See for example the following Scilab session, where we compute the numerical
derivative of f(x) = x2 for x = 10−100. The expected result is f ′(x) = 2.× 10−100.

-->fp = derivative(myfunction ,1.e-100, order =1)
fp =

0.0000000149011611938477
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-->fe=2.e-100
fe =

2.000000000000000040 -100
-->e = abs(fp-fe)/fe
e =

7.450580596923828243D+91

The result does not have any significant digit.
The explanation is that the step is h =

√
r ≈ 10−8. Then, the point x + h is

computed as 10−100 + 10−8 which is represented by a floating point number which
is close to 10−8, because the term 10−100 is much smaller than 10−8. Then we
evaluate the function, which leads to f(x+ h) = f(10−8) = 10−16. The result of the
computation is therefore (f(x+ h)− f(x))/h = (10−16 + 10−200)/10−8 ≈ 10−8.

That experiment shows that the derivative function uses a poor default step
h when x is very small.

To improve the accuracy of the computation, we can take the control of the step
h. A reasonable solution is to use h =

√
r|x| so that the step is scaled depending

on x. The following script illustrates than method, which produces results with 8
significant digits.

-->fp = derivative(myfunction ,1.e-100, order=1,h=sqrt(%eps )*1.e-100)
fp =

2.000000013099139394 -100
-->fe=2.e-100
fe =

2.000000000000000040 -100
-->e = abs(fp-fe)/fe
e =

0.0000000065495696770794

But when x is exactly zero, the step h =
√
r|x| cannot work, because it would

produce the step h = 0, which would generate a division by zero exception. In that
case, the step h =

√
r provides a sufficiently good accuracy.

Another function is available in Scilab to compute the numerical derivatives of
a given function, that is numdiff. The numdiff function uses the step

h =
√
r(1 + 10−3|x|). (163)

In the following paragraphs, we analyze why this formula has been chosen. As we are
going to check experimentally, this step formula performs better than derivative

when x is large, but performs equally bad when x is small.
As we can see the following session, the behavior is approximately the same when

the value of x is 1.

-->fp = numdiff(myfunction ,1.0)
fp =

2.0000000189353417390237
-->fe=2.0
fe =

2.
-->e = abs(fp-fe)/fe
e =

9.468D-09
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The accuracy is slightly decreased with respect to the optimal value 7.450581e-
009 which was produced by the derivative function. But the number of significant
digits is approximately the same, i.e. 9 digits.

The goal of the step used by the numdiff function is to produce good accuracy
when the value of x is large. In this case, the numdiff function produces accurate
results, while the derivative function performs poorly.

In the following session, we compute the numerical derivative of the function
f(x) = x2 at the point x = 1010. The expected result is f ′(x) = 2.1010.

-->numdiff(myfunction ,1.e10)
ans =

2.000D+10
-->derivative(myfunction ,1.e10 ,order =1)
ans =

0.

We see that the numdiff function produces an accurate result while the derivative
function produces a result which has no significant digit.

The behavior of the two functions when x is close to zero is the same, i.e. both
functions produce wrong results. Indeed, when we use the derivative function, the
step h =

√
r is too large so that the point x is neglected against the step h. On

the other hand, we we use the numdiff function, the step h =
√
r(1 + 10−3|x|) is

approximated by h =
√
r so that it produces the same results as the derivative

function.

3.5 References

A reference for numerical derivatives is [6], chapter 25. ”Numerical Interpolation,
Differentiation and Integration” (p. 875). The webpage [43] and the book [39] give
results about the rounding errors.

In order to solve this issue generated by the magnitude of x, more complex
methods should be used. Moreover, we did not give the solution of other sources of
rounding errors. Indeed, the step h =

√
r was computed based on assumptions on

the rounding error of the function evaluations, where we consider that the constant
c is equal to one. This assumption is satisfied only in the ideal case. Furthermore,
we make the assumption that the factor 2|f(x)|

|f ′′(x)| is close to one. This assumption is far
from being achieved in practical situations, where the function value and its second
derivative can vary greatly in magnitude.

Several authors attempted to solve the problems associated with numerical deriva-
tives. A non-exhaustive list of references includes [28, 11, 45, 16].

4 Complex division

In this section, we analyze the problem of the complex division in Scilab. We espe-
cially detail the difference between the mathematical, straightforward formula and
the floating point implementation. In the first part, we briefly report the formulas
which allow to compute the real and imaginary parts of the division of two complex
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numbers. We then present the naive algorithm based on these mathematical formu-
las. In the second part, we make some experiments in Scilab and compare our naive
algorithm with Scilab’s division operator. In the third part, we analyze why and
how floating point numbers must be taken into account when the implementation
of such division is required.

4.1 Theory

Assume that a, b, c and d are four real numbers. Consider the two complex numbers
a+ ib and c+ id, where i is the imaginary number which satisfies i2 = −1. Assume
that c2 + d2 is non zero. We are interested in the complex number e + fi = a+ib

c+id

where e and f are real numbers. The formula which allows to compute the real and
imaginary parts of the division of these two complex numbers is

a+ ib

c+ id
=
ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

. (164)

So that the real and imaginary parts e and f of the complex number are

e =
ac+ bd

c2 + d2
, (165)

f =
bc− ad
c2 + d2

. (166)

The naive algorithm for the computation of the complex division is presented in
figure 5.

input : a, b, c, d
output: e, f
den := c2 + d2;
e := (ac+ bd)/den;
f := (bc− ad)/den;

Algorithm 5: Naive algorithm to compute the complex division. The algorithm
takes as input the real and imaginary parts a, b, c, d of the two complex numbers
and returns e and f , the real and imaginary parts of the division.

4.2 Experiments

The following Scilab function naive is a straightforward implementation of the pre-
vious formulas. It takes as input the complex numbers a and b, represented by their
real and imaginary parts a, b, c and d. The function naive returns the complex
number represented by its real and imaginary parts e and f.

function [e,f] = naive (a , b , c , d )
den = c * c + d * d;
e = (a * c + b * d) / den;
f = (b * c - a * d) / den;

endfunction
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Consider the complex division

1 + i2

3 + i4
=

11

25
+ i

2

25
= 0.44 + i0.08. (167)

We check our result with Wolfram Alpha[42], with the input ”(1+i*2)/(3+i*4)”. In
the following script, we check that there is no obvious bug in the naive implemen-
tation.

--> [e f] = naive ( 1.0 , 2.0 , 3.0 , 4.0 )
f =

0.08
e =

0.44
--> (1.0 + %i * 2.0 )/(3.0 + %i * 4.0 )
ans =

0.44 + 0.08i

The results of the naive function and the division operator are the same, which
makes us confident that our implementation is correct.

Now that we are confident, we make the following numerical experiment involving
a large number. Consider the complex division

1 + i

1 + i10307
≈ 1.0000000000000000 · 10−307 − i1.0000000000000000 · 10−307, (168)

which is accurate to the displayed digits. We check our result with Wolfram Alpha[42],
with the input ”(1 + i)/(1 + i * 10̂ 307)”. In fact, there are more that 300 zeros
following the leading 1, so that the previous approximation is very accurate. The
following Scilab session compares the naive implementation and Scilab’s division
operator.

--> [e f] = naive ( 1.0 , 1.0 , 1.0 , 1.e307 )
f =

0.
e =

0.
--> (1.0 + %i * 1.0)/(1.0 + %i * 1.e307)
ans =

1.000 -307 - 1.000 -307i

In the previous case, the naive implementation does not produce any correct digit!
The last test involves small numbers in the denominator of the complex fraction.

Consider the complex division

1 + i

10−307 + i10−307
=

1 + i

10−307(1 + i)
= 10307. (169)

In the following session, the first statement ieee(2) configures the IEEE system so
that Inf and Nan numbers are generated instead of Scilab error messages.

-->ieee (2);
-->[e f] = naive ( 1.0 , 1.0 , 1.e-307 , 1.e-307 )
f =

Nan
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e =
Inf

-->(1.0 + %i * 1.0)/(1.e-307 + %i * 1.e -307)
ans =

1.000+307

We see that the naive implementation generates the IEEE numbers Nan and Inf,
while the division operator produces the correct result.

4.3 Explanations

In this section, we analyze the reason why the naive implementation of the complex
division leads to inaccurate results. In the first section, we perform algebraic com-
putations and shows the problems of the naive formulas. In the second section, we
present the Smith’s method.

4.3.1 Algebraic computations

In this section, we analyze the results produced by the second and third tests in
the previous numerical experiments. We show that the intermediate numbers which
appear are not representable as double precision floating point numbers.

Let us analyze the second complex division 168. We are going to see that this
division is associated with an IEEE overflow. We have a = 1, b = 1, c = 1 and
d = 10307. By the equations 165 and 166, we have

den = c2 + d2 = 12 + (10307)2 (170)

= 1 + 10614 ≈ 10614, (171)

e = (ac+ bd)/den = (1 ∗ 1 + 1 ∗ 10307)/10614, (172)

≈ 10307/10614 ≈ 10−307, (173)

f = (bc− ad)/den = (1 ∗ 1− 1 ∗ 10307)/10614 (174)

≈ −10307/10614 ≈ −10−307. (175)

We see that both the input numbers a, b, c, d are representable and the output num-
bers e = 10−307 and f = −10−307 are representable as double precision floating point
numbers. We now focus on the floating point representation of the intermediate ex-
pressions. We have

fl(den) = fl(10614) = Inf, (176)

because 10614 is not representable as a double precision number. Indeed, the largest
positive double is 10308. The IEEE Inf floating point number stands for Infinity and
is associated with an overflow. The Inf floating point number is associated with an
algebra which defines that 1/Inf = 0. This is consistent with mathematical limit
of the function 1/x when x→∞. Then, the e and f terms are computed as

fl(e) = fl((ac+ bd)/den) = fl((1 ∗ 1 + 1 ∗ 10307)/Inf) = fl(10307/Inf) = 0,(177)

fl(f) = fl((bc− ad)/den) = fl((1 ∗ 1− 1 ∗ 10307)/Inf) = fl(−10307/Inf) = 0.(178)
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Hence, the result is computed without any significant digit, even though both the
input and the output numbers are all representable as double precision floating point
numbers.

Let us analyze the second complex division 169. We are going to see that this
division is associated with an IEEE underflow. We have a = 1, b = 1, c = 10−307

and d = 10−307. We now use the equations 165 and 166, which leads to:

den = c2 + d2 = (10−307)2 + (10−307)2 (179)

= 10−614 + 10−614 = 2.10−616, (180)

e = (ac+ bd)/den = (1 ∗ 10−307 + 1 ∗ 10−307)/(2.10−614) (181)

= (2.10−307)/(2.10−614) = 10307, (182)

f = (bc− ad)/den = (1 ∗ 10−307 − 1 ∗ 10−307)/(2.10−614) (183)

= 0/10−614 = 0. (184)

With double precision floating point numbers, the computation is not performed
this way. The positive terms which are smaller than 10−324 are too small to be
representable in double precision and are represented by 0 so that an underflow
occurs. This leads to

fl(den) = fl(c2 + d2) = fl(10−614 + 10−614) (185)

= 0, (186)

fl(e) = fl((ac+ bd)/den) = fl((1 ∗ 10−307 + 1 ∗ 10−307)/(2.10−614))(187)

= fl(2.10−307/0) = Inf, (188)

fl(f) = fl((bc− ad)/den) = fl((1 ∗ 10−307 − 1 ∗ 10−307)/0) (189)

= fl(0/0) = NaN. (190)

The two previous examples shows that, even if both the input and output num-
bers are representable as floating point numbers, the intermediate expressions may
generate numbers which may not be representable as floating point numbers. Hence,
a naive implementation can lead to inaccurate results. In the next section, we present
a method which allows to cure most problems generated by the complex division.

4.3.2 Smith’s method

In this section, we analyze Smith’s method, which allows to produce an accurate
division of two complex numbers. We present the detailed steps of this modified
algorithm in the particular cases that we have presented.

In Scilab, the algorithm which allows to perform the complex division is done by
the the wwdiv routine, which implements Smith’s method [44]. This implementation
is due to Bruno Pinçon. Smith’s algorithm is based on normalization, which allow
to perform the complex division even if the input terms are large or small.

The starting point of the method is the mathematical definition 164, which is
reproduced here for simplicity

a+ ib

c+ id
= e+ if =

ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

. (191)
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Smith’s method is based on the rewriting of this formula in two different, but
mathematically equivalent, formulas. We have seen that the term c2 + d2 may
generate overflows or underflows. This is caused by intermediate expressions which
magnitudes are larger than necessary. The previous numerical experiments suggest
that, provided that we had simplified the calculation, the intermediate expressions
would not have been unnecessary large.

Consider the term e = ac+bd
c2+d2

in the equation 191 and assume that c 6= 0 and
d 6= 0. Let us assume that c is large in magnitude with respect to d, i.e. |d| � |c|.
This implies d/c ≤ 1. We see that the denominator c2 + d2 squares the number c,
which also appears in the numerator. Therefore, we multiply both the numerator
and the denominator by 1/c. If we express e as a+b(d/c)

c+d(d/c)
, which is mathematically

equivalent, we see that there is no more squaring of c. Hence, overflows are less
likely to occur in the denominator, since |d(d/c)| = |d||d/c| ≤ |d|. That is, there
is no growth in the magnitude of the terms involved in the computation of the
product d(d/c). Similarly, overflows are less likely to occur in the numerator, since
|b(d/c)| = |b||d/c| ≤ |b|. In the opposite case where d is large with respect to c, i.e.
d � c, we could divide the numerator and the denominator by 1/d. This leads to
the formulas

a+ ib

c+ id
=

a+ b(d/c)

c+ d(d/c)
+ i

b− a(d/c)

c+ d(d/c)
, (192)

=
a(c/d) + b

c(c/d) + d
+ i

b(c/d)− a
c(c/d) + d

. (193)

The previous equations can be simplified as

a+ ib

c+ id
=

a+ br

c+ dr
+ i

b− ar
c+ dr

, r = d/c, if |c| ≥ |d|, (194)

=
ar + b

cr + d
+ i

br − a
cr + d

, r = c/d, if |d| ≥ |c|. (195)

The following smith function implements Smith’s method in the Scilab lan-
guage.

function [e,f] = smith ( a , b , c , d )
if ( abs(d) <= abs(c) ) then

r = d/c;
den = c + d * r;
e = (a + b * r) / den;
f = (b - a * r) / den;

else
r = c/d;
den = c * r + d;
e = (a * r + b) / den;
f = (b * r - a) / den;

end
endfunction

We now check that Smith’s method performs very well for the difficult complex
division that we met earlier in this chapter.

Let us analyze the second complex division 168. We have a = 1, b = 1, c = 1
and d = 10307. For this division, Smith’s method is the following.
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if ( |1. e307| <= |1| ) > test false
else

r = c/d = 1 / 1.e307 = 1.e-307
den = c * r + d = 1 * 1.e-307 + 1.e307 = 1.e307
e = (a * r + b)/den = (1 * 1.e-307 + 1) / 1.e307 = 1 / 1.e307

= 1.e-307
f = (b * r - a)/den = (1 * 1.e-307 - 1) / 1.e307 = -1 / 1.e307

= -1.e-308

We see that, while the naive division generated an overflow, Smith’s method pro-
duces the correct result.

Let us analyze the second complex division 169. We have a = 1, b = 1, c = 10−307

and d = 10−307.

if ( |1.e-307| <= |1.e -307| ) > test true
r = d/c = 1.e-307 / 1.e-307 = 1
den = c + d * r = 1.e-307 + 1e-307 * 1 = 2.e-307
e = (a + b * r) / den = (1 + 1 * 1) / 2.e-307 = 2/2.e-307

= 1.e307
f = (b - a * r) / den = (1 - 1 * 1) / 2.e-307

= 0

We see that, while the naive division generated an underflow, Smith’s method pro-
duces the correct result.

Now that we have designed a more robust algorithm, we are interested in testing
Smith’s method on a more difficult case.

4.4 One more step

In this section, we show the limitations of Smith’s method and present an example
where Smith’s method does not perform as expected.

The following example is inspired by an example by Stewart’s in [46]. While
Stewart gives an example based on a machine with an exponent range ±99, we
consider an example which is based on Scilab’s doubles. Consider the complex
division

10307 + i10−307

10204 + i10−204
≈ 1.000000000000000 · 10103 − i1.000000000000000 · 10−305, (196)

which is accurate to the displayed digits. In fact, there are more that 100 zeros
following the leading 1, so that the previous approximation is very accurate. The
following Scilab session compares the naive implementation, Smith’s method and
Scilab’s division operator. The session is performed with Scilab v5.2.0 under a 32
bits Windows using a Intel Xeon processor.

-->[e f] = naive ( 1.e307 , 1.e-307 , 1.e204 , 1.e-204 )
f =

0.
e =

Nan
-->[e f] = smith ( 1.e307 , 1.e-307 , 1.e204 , 1.e-204 )
f =

0.
e =
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1.000+103
-->(1.e307 + %i * 1.e -307)/(1. e204 + %i * 1.e-204)
ans =

1.000+103 - 1.000 -305i

In the previous case, the naive implementation does not produce any correct digit, as
expected. Smith’s method, produces a correct real part, but an inaccurate imaginary
part. Once again, Scilab’s division operator provides the correct answer.

We first check why the naive implementation is not accurate in this case. We have
a = 10307, b = 10−307, c = 10204 and d = 10−204. Indeed, the naive implementation
performs the following steps.

den = c * c + d * d = 1.e204 * 1.e204 + 1.e-204 * 1.e-204
= Inf

e = (a * c + b * d) / den
= (1. e307 * 1.e204 + 1.e-307 * 1.e-204 ) / Inf = Inf / Inf
= Nan

f = (b * c - a * d) / den
= (1.e-307 * 1.e204 - 1.e307 * 1.e-204) / Inf = -1.e103 / Inf
= 0

We see that the denominator den overflows, which makes e to be computed as Nan

and f to be computed as 0.
Second, we check that Smith’s formula is not accurate in this case. Indeed, it

performs the following steps.

if ( abs(d) = 1.e-204 <= abs(c) = 1.e204 ) > test true
r = d/c = 1.e-204 / 1.e204 = 0
den = c + d * r = 1.e204 + 1.e-204 * 0 = 1.e204
e = (a + b * r) / den = (1. e307 + 1.e-307 * 0) / 1e204

= 1.e307 / 1.e204 = 1.e103
f = (b - a * r) / den = (1.e-307 - 1.e307 * 0) / 1e204

= 1.e-307 / 1.e204 = 0

We see that the variable r underflows, so that it is represented by zero. This sim-
plifies the denominator den, but this variable is still correctly computed, because it
is dominated the term c. The real part e is still accurate, because, once again, the
computation is dominated by the term a. The imaginary part f is wrong, because
this term should be dominated by the term a*r. Since r underflows, it is represented
by zero, which completely changes the result of the expression b-a*r, which is now
equal to b. Therefore, the result is equal to 1.e-307 / 1.e204, which underflows
to zero.

Finally, we analyze why Scilab’s division operator performs accurately in this
case. Indeed, the formula used by Scilab is based on Smith’s method and we proved
that this method fails in this case, when we use double floating point numbers.
Therefore, we experienced here an unexpected high accuracy.

We performed this particular complex division over several common computing
systems such as various versions of Scilab, Octave, Matlab and FreeMat on various
operating systems. The results are presented in figure 1. Notice that, on Matlab,
Octave and FreeMat, the syntax is different and we used the expression (1.e307 +

i * 1.e-307)/(1.e204 + i * 1.e-204).
The reason of the discrepancies of the results is the following [37, 34]. The

processor being used may offer an internal precision that is wider than the precision
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Scilab v5.2.0 release Windows 32 bits 1.000+103 - 1.000-305i
Scilab v5.2.0 release Windows 64 bits 1.000+103
Scilab v5.2.0 debug Windows 32 bits 1.000+103
Scilab v5.1.1 release Windows 32 bits 1.000+103
Scilab v4.1.2 release Windows 32 bits 1.000+103
Scilab v5.2.0 release Linux 32 bits 1.000+103 - 1.000-305i
Scilab v5.1.1 release Linux 32 bits 1.000+103 - 1.000-305i
Octave v3.0.3 Windows 32 bits 1.0000e+103
Matlab 2008 Windows 32 bits 1.0000e+103 -1.0000e-305i
Matlab 2008 Windows 64 bits 1.0000e+103
FreeMat v3.6 Windows 32 bits 1.0000e+103 -1.0000e-305i

Figure 1: Result of the complex division (1.e307 + %i * 1.e-307)/(1.e204 + %i

* 1.e-204) on various softwares and operating systems.

of the variables of a program. Indeed, processors of the IA32 architecture (Intel
386, 486, Pentium etc. and compatibles) feature a floating-point unit often known
as ”x87”. This unit has 80-bit registers in ”double extended” format with a 64-
bit mantissa and a 15-bit exponent. The most usual way of generating code for
the IA32 is to hold temporaries - and, in optimized code, program variables - in
the x87 registers. Hence, the final result of the computations depend on how the
compiler allocates registers. Since the double extended format of the x87 unit uses
15 bits for the exponent, it can store floating point numbers associated with binary
exponents from 2−16382 ≈ 10−4932 up to 216383 ≈ 104931, which is much larger than
the exponents from the 64-bits double precision floating point numbers (ranging
from 2−1022 ≈ 10−308 up to 21023 ≈ 10307). Therefore, the computations performed
with the x87 unit are less likely to generate underflows and overflows. On the other
hand, SSE2 extensions introduced one 128-bit packed floating-point data type. This
128-bit data type consists of two IEEE 64-bit double-precision floating-point values
packed into a double quadword.

Depending on the compilers options used to generate the binary, the result may
use either the x87 unit (with 80-bits registers) or the SSE unit. Under Windows
32 bits, Scilab v5.2.0 is compiled with the ”/arch:IA32” option [9], which allows
Scilab to run on older Pentium computers that does not support SSE2. In this
situation, Scilab may use the x87 unit. Under Windows 64 bits, Scilab uses the
SSE2 unit so that the result is based on double precision floating point numbers
only. Under Linux, Scilab is compiled with gcc [13], where the behavior is driven by
the -mfpmath option. The default value of this option for i386 machines is to use
the 387 floating point co-processor while, for x86 64 machines, the default is to use
the SSE instruction set.

4.5 References

The 1962 paper by R. Smith [44] describes the algorithm which is used in Scilab.
Goldberg introduces in [18] many of the subjects presented in this document,
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including the problem of the complex division.
An analysis of Hough, cited by Coonen [8] and Stewart [46] shows that when the

algorithm works, it returns a computed value z satisfying

|z − z| ≤ ε|z|, (197)

where z is the exact complex division result and ε is of the same order of magnitude
as the rounding unit for the arithmetic in question.

The limits of Smith’s method have been analyzed by Stewart’s in [46]. The paper
separates the relative error of the complex numbers and the relative error made on
real and imaginary parts. Stewart’s algorithm is based on a theorem which states
that if x1 . . . xn are n floating point representable numbers, and if their product is also
a representable floating point number, then the product mini=1,n(xi).maxi=1,n(xi) is
also representable. The algorithm uses that theorem to perform a correct computa-
tion.

Stewart’s algorithm is superseded by the one by Li et al. [31], but also by Kahan’s
[25], which, from [40], is the one implemented in the C99 standard.

In [31], Li et al. present an improved complex division algorithm with scaling.
The section 6.1, ”Environmental Enquiries”, presents Smith’s algorithm. The au-
thors state that this algorithm can suffer from intermediate underflow. As complex
division occurs rarely in the BLAS, the authors have chosen to have a more careful
implementation. This implementation scales the numerator and denominator if they
are two small or too large. An error bound is presented for this algorithm, which is
presented in the appendix B. Notice that this appendix is presented in the technical
report (October 20, 2000), but not in the paper published by ACM (2002).

In the ISO/IEC 9899:TC3 C Committee Draft [21], the section G.5.1 ”Multi-
plicative operators”, the authors present a _Cdivd function which implements the
complex division. Their implementation only scales the denominator c2 + d2. This
scaling is based on a power of 2, which avoid extra rounding. Only in the case of
an IEEE exceptions, the algorithm recompute the division, taking into account for
Nans and Infinities. According to the authors, this solves the main overflow and
underflow problem. The code does not defend against overflow and underflow in the
calculation of the numerator. According to Kahan [27] (in the Appendix ”Over/Un-
derflow Undermines Complex Number Division in Java”), this code is due to Jim
Thomas and Fred Tydeman.

Knuth presents in [29] the Smith’s method in section 4.2.1, as exercize 16. Knuth
gives also references [48] and [15]. The 1967 paper by Friedland [15] describes two
algorithms to compute the absolute value of a complex number |x+ iy| =

√
x2 + y2

and the square root of a complex number
√
x+ iy.

Issues related to the use of extended double precision floating point numbers
are analyzed by Muller et al. in [37]. In the section 3 of part I, ”Floating point
formats an Environment”, the authors analyze the ”double rounding” problem which
occurs when an internal precision is wider than the precision of the variables of
a program. The typical example is the double-extended format available on Intel
platforms. Muller et al. show different examples, where the result depends on the
compiler options and the platform, including an example extracted from a paper by
Monniaux [34].
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Corden and Kreitzer analyse in [9] the effect of the Intel compiler floating point
options on the numerical results. The paper focuses on the reproductibility issues
which are associated with floating point computations. The options which allow to
be compliant with the IEEE standards for C++ and Fortran are presented. The
effects of optimization options is considered with respect to speed and the safety of
the transformations that may be done on the source code.

The ”Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 1:
Basic Architecture” [10] is part of a set of documents that describes the architecture
and programming environment of Intel 64 and IA-32 architecture processors. The
chapter 8, ”Programming with the x87 environment” presents the registers and the
instruction set for this unit. The section 8.1.2, ”x87 FPU Data Registers” focuses
on the floating point registers, which are based on 80-bits and implements the dou-
ble extended-precision floating-point format. The chapter 10, ”Programming with
Streaming SIMD Extensions (SSE)” introduces the extensions which were intro-
duced into the IA-32 architecture in the Pentium III processor family. The chapter
11 introduces the SSE2 extensions.

In [34], David Monniaux presents issues related to the analysis of floating point
programs. He emphasizes the difficulty of defining the semantics of common imple-
mentation of floating point numbers, depending on choices made by the compiler.
He gives concrete examples of problems that can appear and solutions.

In the exercise 25.2 of the chapter 25 ”Software issues in floating point arithmetic”
of [20], Nicolas Higham makes a link between the complex division and the Gaussian
elimination. He suggest that Smith’s algorithm can be derived from appliying the
Gaussian elimination algorithm with partial pivoting obtained from (c+id)(e+if) =
a+ ib.

In the Appendix B ”Smith?s Complex Division Algorithm with Scaling”, of [30],
Li et al. present a modified Smith’s algorithm.

4.6 Exercises

Exercise 4.1 (Complex division formula) Prove equality 164.

Exercise 4.2 (Complex division) Prove that 1+i2
3+i4 = 11

25 + i 2
25 .

Exercise 4.3 (Complex division) Prove a simplified version of the equation 168, that is, prove
that

1 + i

1 + i10307
≈ 10−307 − i10−307. (198)

Exercise 4.4 (Taylor expansion of inverse function near zero) Prove that if x ∈ R is close
to zero, then

1
1 + x

= 1− x+ x2 − x3 +O(x4). (199)

Exercise 4.5 (Taylor expansion of inverse function near +∞) Prove that if x ∈ R is close
to +∞, then

1
1 + x

=
1
x
−
(

1
x

)2

+
(

1
x

)3

+O

((
1
x

)4
)
. (200)
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Exercise 4.6 (Complex division approximation) Prove that the approximation 168 is accu-
rate to more that 300 digits, that is, prove that

1 + 10307

1 + 10614
= 10−307 +O(10−614). (201)

Exercise 4.7 (Complex division approximation) Assume that m,n are integers which satisfy

m� 0 (202)
n� 0 (203)
n� m (204)

Prove that

10n + i10−n

10m + i10−m
≈ 10n−m − i10n−3m. (205)

Exercise 4.8 (Complex division approximation) Assume that the integers m and n satisfy

4 < m ≤ 308, (206)
12 < n ≤ 308, (207)
m+ 8 < n, (208)

0 ≤ n−m ≤ 308, (209)
−307 ≤ n− 3m ≤ 0. (210)

Prove that the approximation 205 is an equality with double precision floating point numbers and
prove that all the terms in the expression 205 are representable as floating point numbers.

Exercise 4.9 (Examples of failing Smith’s formula) Assume that the integers m and n
satisfy the inequalities 206 to 210. Assume that the integers m and n satisfy the inequalities

162 < m, (211)
324 < m+ n. (212)

Prove that Smith’s method fails to compute a correct result for the complex division 205 with double
floating point numbers, that is, prove that the imaginary part computed by Smith’s method is zero.

Exercise 4.10 (Examples of failing Smith’s formula) Compute the number of integers m
and n satisfying the assumptions of exercise 4.8. Give examples of such integers m and n.

Compute the number of integers m and n satisfying the assumptions of exercise 4.9. Give
examples of such integers m and n.

4.7 Answers to exercises

Answer of Exercise 4.1 (Complex division formula) Let us prove equality 164. We consider the
fraction a+ib

c+id and we multiply both the numerator and the denominator by the number c+ id =
c− id. This leads to

a+ ib

c+ id
=

a+ ib

c+ id

c− id
c− id

(213)

=
(ac− i2bd) + i(bc− ad)

c2 + d2
(214)

=
(ac+ bd) + i(bc− ad)

c2 + d2
. (215)

We separate the real and imaginary parts in the previous equations and finally get the equality
164.
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Answer of Exercise 4.2 (Complex division formula) By the equation 164, we have

1 + i2
3 + i4

=
1 · 3 + 2 · 4

32 + 42
+ i

2 · 3− 1 · 4
32 + 42

(216)

=
3 + 8
9 + 16

+ i
6− 4
9 + 16

(217)

=
11
25

+ i
2
25
. (218)

Answer of Exercise 4.3 (Complex division) By the equation 164, we have

1 + i

1 + 10307i
=

1 · 1 + 1 · 10307

12 + (10307)2
+ i

1 · 1− 1 · 10307

12 + (10307)2
(219)

=
1 + 10307

1 + 10614
+ i

1− 10307

1 + 10614
(220)

≈ 10307

10614
− i10307

10614
(221)

≈ 10−307 − i10−307. (222)

Answer of Exercise 4.4 (Taylor expansion of inverse function near zero) Assume that f is
a continuously differentiable function. By Taylor’s theorem, we have

f(x+ h) = f(x) + hf ′(x) +
1
2
h2f ′′(x) +

1
6
h3f ′′′(x) +O(h4). (223)

We use the Taylor’s expansion 223 with f(x) = 1
1+x in the neighborhood of x = 0. The derivatives

of the function f are

f ′(x) = −(1 + x)−2, f ′′(x) = 2(1 + x)−3, f ′′′(x) = −6(1 + x)−4, (224)

so that

f(0) = 1, f ′(0) = −1, f ′′(0) = 2, f ′′′(0) = −6. (225)

The Taylor expansion 223 therefore implies

1
1 + h

= 1 + h · (−1) +
1
2
h2 · 2 +

1
6
h3 · (−6) +O(h4), (226)

= 1− h+ h2 − h3 +O(h4), (227)

which concludes the proof.

Answer of Exercise 4.5 (Taylor expansion of inverse function near +∞) When x → +∞,
we have 1/x→ 0. Therefore, we can use the result of the exercise 4.4, which implies

1
1 + 1/x

= 1− (1/x) + (1/x)2 − (1/x)3 +O((1/x)4). (228)

We can simplify the previous expression. Indeed,

1
1 + 1/x

=
1

1+x
x

(229)

=
x

1 + x
(230)

=
x+ 1− 1

1 + x
(231)

= 1− 1
1 + x

. (232)
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By the equation 228, this leads to

1− 1
1 + x

= 1− (1/x) + (1/x)2 − (1/x)3 +O((1/x)4). (233)

In the previous equation, the constant term 1 can be simplified from both sides, which immediately
leads to the equation 200 and concludes the proof.

Answer of Exercise 4.6 (Complex division approximation) Let us prove that the approxi-
mation 168 is accurate to more that 300 digits, that is, let us prove that

1 + 10307

1 + 10614
= 10−307 +O(10−614). (234)

The starting point is the equality 220, which we rewrite here for consistency:

1 + i

1 + i10307
=

1 + 10307

1 + 10614
+ i

1− 10307

1 + 10614
. (235)

We use the Taylor expansion 200 in order to compute the expression 1
1+10614 , and then compute

the fraction 1+10307

1+10614 . By the Taylor expansion 200, we have

1
1 + 10614

=
1

10614
+O

((
1

10614

)2
)

(236)

= 10−614 +O(10−1228). (237)

Therefore,

1 + 10307

1 + 10614
= (1 + 10307)(10−614 +O(10−1228)) (238)

= 10−614 +O(10−1228) + 10−307 +O(10−921) (239)
= 10−307 +O(10−614). (240)

The last equality proves that the approximation 1+10307

1+10614 ≈ 1.0 . . . 0 · 10−307 is accurate up to 306
zeros. Similarily, we have

1− 10307

1 + 10614
= (1− 10307)(10−614 +O(10−1228)) (241)

= 10−614 +O(10−1228)− 10−307 +O(10−921) (242)
= −10−307 +O(10−614). (243)

Therefore, the approximation 1−10307

1+10614 ≈ −1.0 . . . 0 · 10−307 is accurate up to 306 zeros. This proves
that the approximation 168 is accurate to more that 300 digits and concludes the proof.

Answer of Exercise 4.7 (Complex division approximation) By the equation 164, we have

10n + i10−n

10m + i10−m
=

10n10m + 10−n10−m

(10m)2 + (10−m)2
+ i

10−n10m − 10n10−m

(10m)2 + (10−m)2
(244)

=
10n+m + 10−(m+n)

102m + 10−2m
+ i

10m−n − 10n−m

102m + 10−2m
. (245)

We will now use the assumptions 202 to 204 and simplify the previous equation.

• The assumptions 202 and 203 implies m+ n� 0. Therefore,

10n+m + 10−(m+n) ≈ 10n+m. (246)

• By the assumption 202, we have

102m + 10−2m ≈ 102m. (247)

41



• The assumption 204 implies n−m� 0. Therefore,

10m−n − 10n−m ≈ −10n−m. (248)

Therefore, the equation 245 simplifies into

10n + i10−n

10m + i10−m
≈ 10n+m

102m
+ i
−10n−m

102m
(249)

≈ 10n−m − i10n−3m. (250)

We could prove that this approximation is correct up to approximately several 100 digits. This
would require to use a Taylor expansion, as we did previously.

Answer of Exercise 4.8 (Complex division approximation) Assume that we consider IEEE
double precision floating point numbers. Assume that x and y are integers and satisfy −307 ≤
x, y ≤ 308. Double precision numbers are associated with at most 16 significant decimal digits.
Therefore, if x > y + 16, we have

fl(10x + 10y) = fl(10x). (251)

We will use this property throughought this exercise.
We are going to prove that, under the stated assumptions, we have

fl

(
10n + i10−n

10m + i10−m

)
= fl(10n−m − i10n−3m). (252)

We consider the equality 245 and consider the particular range of integers which are so that
the approximations that we derived from there are satisfied with doubles.

• By the equality 251, the equality

fl(10n+m + 10−(m+n)) = fl(10n+m) (253)

is true if n+m > −(m+n) + 16. This is equivalent to 2(m+n) > 16 which can be written

m+ n > 8. (254)

• By the equality 251, the equality

fl(102m + 10−2m) = fl(102m) (255)

is true if 2m > −2m+ 16. This is equivalent to 4m > 16 which can be written

m > 4. (256)

• By the equality 251, the equality

fl(10m−n − 10n−m) = fl(−10n−m) (257)

is true if n−m > m− n+ 16. This is equivalent to 2(n−m) > 16 and can be written as

n > m+ 8. (258)

Notice that, if m > 4 and n > m+ 8, then n > 4 + 8 = 12 which is implied by the inequality 207.
If the inequalities 254, 256 and 258 are satisfied, then the equality 252 is satisfied. Assume that
the inequalities 206, 207 and 208 are satisfied. Let us prove that this imply that the inequalities
254, 256 and 258 are satisfied.

• By the inequalities 206 and 207, we have m > 4 and n > 12, which imply m + n > 16 so
that the inequality 254 is satisfied.

• By the inequality 206, we have m > 4, so that 256 is satisfied.
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• By assumption, we have 208, which is identical to 258.

Therefore, we have prove that the inequalities 206, 207 and 208 leads the floating point equality
252.

It is easy to prove that when the inequalities 206 to 210 are satisfied, then all the terms in the
complex division 252 are representable as double precision floating point numbers.

Answer of Exercise 4.9 (Examples of failing Smith’s formula) Assume that the integers
m and n satisfy the inequalities 206 to 210. Let us consider the steps of Smith’s method in the
particular case of the complex division 252. We have a = 10n, b = 10−n, c = 10m and d = 10−m.
Since |d| = 10−m ≤ |c| = 10m, the floating point statements of Smith’s method are the following.

fl(r) = fl(d/c) = fl(10−m/10m) = fl(10−2m) (259)
fl(den) = fl(c+ dr) = fl(10m + 10−m10−2m) = fl(10m + 10−3m) (260)

= fl(10m) (261)
fl(e) = fl((a+ br)/den) = fl((10n + 10−n10−2m)/(10m + 10−3m)) (262)

= fl((10n + 10−n−2m)/(10m + 10−3m)) = fl(10n/10m) (263)
= fl(10n−m) (264)

fl(f) = fl((b− ar)/den) = fl((10−n − 10n10−2m)/(10m + 10−3m)) (265)
= fl((10−n − 10n−2m)/(10m + 10−3m)) = fl(−10n−2m/10m) (266)
= fl(−10n−3m) (267)

We now justify the approximations that we have used in the previous computation, which are
mainly based on the equality 251.

• We have fl(10m + 10−3m) = fl(10m). Indeed, by assumption 206, we have m > 4, which
implies 4m > 16. This leads to m > −3m+ 16 and the equation 251 proves the result.

• We have fl(10n + 10−n−2m) = fl(10n). Indeed, by the assumptions 206 and 207, we have
m > 4 and n > 12, so that m+n > 16 > 8. Therefore, we have 2m+2n > 16, which implies
n > −n− 2m+ 16 and the equation 251 proves the result.

• We have fl(10−n − 10n−2m) = fl(−10n−2m). Indeed, by the assumption 208, we have
n > m + 8. This implies n − m > 8, which leads to 2n − 2m > 16. We finally get
n− 2m > −n+ 16 and the equation 251 proves the result.

We now search conditions which produce a failure of Smith’s method, that is, we prove the
inequalities 211 and 212 leads to a failure of the previous formulas.

We notice that, if m is sufficiently large, then r = 10−2m cannot be represented as a double.
This happens if −2m < −324, so that r = 10−2m < 10−324, which is the smallest positive nonzero
double. The assumption m > 162 is implied by the inequality 211, which leads to fl(r) = 0. This
implies that fl(den) = fl(c+dr) = fl(c) = fl(10m). This implies that fl(f) = fl((b−ar)/den) =
fl(b/den) = fl(10−n/10m) = fl(10−n−m). The imaginary part of the complex division f is zero if
−n−m < 324. This is the assumption of the inequality 212. We have proved that the inequalities
211 and 212 leads to a zero floating point representation of f , the imaginary part of the complex
division.

Answer of Exercise 4.10 (Examples of failing Smith’s formula) Let us compute the number
of integers m and n satisfying the assumptions of exercise 4.8. The following Scilab script allows
to compute these couples (n,m), by performing two nested loops in the allowed range for n and
m.

N = 0;
for m = 5:308

for n = 13:308
if ( (m + 8 < n) & (n-m>=0) & (n-m <308) & ...

(n-3*m >= -307) & (n-3*m<=0) ) then
N = N + 1;

end
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end
end

We find that there are 22484 such couples. In order to extract some examples from all these
couples, we add the condition modulo(n,20)==0 & modulo(m,20)==0 in the if statement. The
following is a list of some examples.

n=40, m=20
n=220, m=80
n=140, m=120
n=260, m=140
n=280, m=160

It is easy to check our result with Wolfram Alpha[42], for example with the input ”(10̂ 140 +
10̂ -140 * i)/(10̂ 20 + 10̂ -20 * i)”.

Let us compute the number of integers m and n satisfying the assumptions of exercise 4.9. The
following Scilab script allows to compute these couples (n,m), by performing two nested loops in
the allowed range for n and m.

N = 0;
for m = 163:308

for n = 13:308
if ( (m + 8 < n) & (n-m>=0) & (n-m <308) ...

& (n-3*m >= -307) & (n-3*m<=0) & (n+m>324) ) then
N = N + 1;

end
end

end

We find 2752 such couples. In order to extract some examples from all these couples, we add the
condition modulo(n,20)==0 & modulo(m,20)==0 in the if statement. The following is a list of
some examples.

n=240, m=180
n=260, m=180
n=280, m=180
n=300, m=180
n=300, m=200

We notice that 2752/22484= 0.122 (which is accurate to the displayed digits) that, when the
complex division 252 is considered, it is not rare that Smith’s method fails.

5 Conclusion

We have presented several cases where the mathematically perfect algorithm (i.e.
without obvious bugs) does not produce accurate results with the computer in par-
ticular situations. Many Scilab algorithms take floating point values as inputs, and
return floating point values as output. We have presented situations where the in-
termediate calculations involve terms which are not representable as floating point
values. We have also presented examples where cancellation occurs so that the
rounding errors dominate the result. We have analyzed specific algorithms which
can be used to cure some of the problems.

Most algorithms provided by Scilab are designed specifically to take into account
for floating point numbers issues. The result is a collection of robust algorithms
which, most of the time, exceed the user’s needs.
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Still, it may happen that the algorithm used by Scilab is not accurate enough,
so that floating point issues may occur in particular cases. We cannot pretend
that Scilab always use the best algorithm. In fact, we have given in this document
practical (but extreme) examples where the algorithm used by Scilab is not accurate.
In this situation, an interesting point is that Scilab is open-source, so that anyone
who wants to can inspect the source code, analyze the algorithm and point out the
problems of this algorithm.

That article does not aim at discouraging from using floating point numbers or
implementing our own algorithms. Instead, the goal of this document is to give
examples where some specific work is to do when we translate the mathematical
material into a computational algorithm based on floating point numbers. Indeed,
accuracy can be obtained with floating point numbers, provided that we are less
naive, use the appropriate theory and algorithms, and perform the computations
with tested softwares.
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7 Appendix

In this section, we analyze the examples given in the introduction of this article.
In the first section, we analyze how the real number 0.1 is represented by a double
precision floating point number, which leads to a rounding error. In the second
section, we analyze how the computation of sin(π) is performed. In the final section,
we make an experiment which shows that sin(210iπ) can be arbitrary far from zero
when we compute it with double precision floating point numbers.

7.1 Why 0.1 is rounded

In this section, we present a brief explanation for the following Scilab session. It
shows that the mathematical equality 0.1 = 1−0.9 is not exact with binary floating
point integers.

-->format (25)
-->x1=0.1
x1 =

0.1000000000000000055511
-->x2 = 1.0 -0.9
x2 =

0.0999999999999999777955
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-->x1==x2
ans =
F

We see that the real decimal number 0.1 is displayed as 0.100000000000000005.
In fact, only the 17 first digits after the decimal point are significant : the last digits
are a consequence of the approximate conversion from the internal binary double
number to the displayed decimal number.

In order to understand what happens, we must decompose the floating point
number into its binary components. The IEEE double precision floating point num-
bers used by Scilab are associated with a radix (or basis) β = 2, a precision p = 53,
a minimum exponent emin = −1023 and a maximum exponent emax = 1024. Any
floating point number x is represented as

fl(x) = M · βe−p+1, (268)

where

• e is an integer called the exponent,

• M is an integer called the integral significant.

The exponent satisfies emin ≤ e ≤ emax while the integral significant satisfies |M | ≤
βp − 1.

Let us compute the exponent and the integral significant of the number x = 0.1.
The exponent is easily computed by the formula

e = blog2(|x|)c, (269)

where the log2 function is the base-2 logarithm function. In the case where an
underflow or an overflow occurs, the value of e is restricted into the minimum and
maximum exponents range. The following session shows that the binary exponent
associated with the floating point number 0.1 is -4.

-->format (25)
-->x = 0.1
x =

0.1000000000000000055511
-->e = floor(log2(x))
e =
- 4.

We can now compute the integral significant associated with this number, as in the
following session.

-->M = x/2^(e-p+1)
M =

7205759403792794.

Therefore, we deduce that the integral significant is equal to the decimal integer
M = 7205759403792794. This number can be represented in binary form as the 53
binary digit number

M = 11001100110011001100110011001100110011001100110011010. (270)
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We see that a pattern, made of pairs of 11 and 00 appears. Indeed, the real value
0.1 is approximated by the following infinite binary decomposition:

0.1 =

(
1

20
+

1

21
+

0

22
+

0

23
+

1

24
+

1

25
+ . . .

)
· 2−4. (271)

We see that the decimal representation of x = 0.1 is made of a finite number of
digits while the binary floating point representation is made of an infinite sequence
of digits. But the double precision floating point format must represent this number
with 53 bits only.

Notice that, the first digit is not stored in the binary double format, since it
is assumed that the number is normalized (that is, the first digit is assumed to be
one). Hence, the leading binary digit is implicit. This is why there is only 52 bits
in the mantissa, while we use 53 bits for the precision p. For the sake of simplicity,
we do not consider denormalized numbers in this discussion.

In order to analyze how the rounding works, we look more carefully to the integer
M , as in the following experiments, where we change only the last decimal digit of
M .

- - >7205759403792793 * 2^( -4 -53+1)
ans =

0.0999999999999999916733
- - >7205759403792794 * 2^( -4 -53+1)
ans =

0.1000000000000000055511

We see that the exact number 0.1 is between two consecutive floating point numbers:

7205759403792793 · 2−4−53+1 < 0.1 < 7205759403792794 · 2−4−53+1. (272)

There are four rounding modes in the IEEE floating point standard. The default
rounding mode is round to nearest, which rounds to the nearest floating point num-
ber. In case of a tie, the rounding is performed to the only one of these two con-
secutive floating point numbers whose integral significant is even. In our case, the
distance from the exact x to the two floating point numbers is

|0.1− 7205759403792793 · 2−4−53+1| = 8.33 · · · 10−18, (273)

|0.1− 7205759403792794 · 2−4−53+1| = 5.55 · · · 10−18. (274)

(The previous computation is performed with a symbolic computation system, not
with Scilab). Therefore, the nearest is 7205759403792794 · 2−4−53+1, which leads to
fl(0.1) = 0.100000000000000005.

On the other side, x = 0.9 is also not representable as an exact binary floating
point number (but 1.0 is exactly represented). The floating point binary represen-
tation of x = 0.9 is associated with the exponent e = −1 and an integral significant
between 8106479329266892 and 8106479329266893. The integral significant which is
nearest to x = 0.9 is 8106479329266893, which is associated with the approximated
decimal number fl(0.9) ≈ 0.90000000000000002.

Then, when we perform the subtraction ”1.0-0.9”, the decimal representation
of the result is fl(1.0) − fl(0.9) ≈ 0.09999999999999997, which is different from
fl(0.1) ≈ 0.100000000000000005.
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We have shown that the mathematical equality 0.1 = 1 − 0.9 is not exact with
binary floating point integers. There are many other examples where this happens.
In the next section, we consider the sine function with a particular input.

7.2 Why sin(π) is rounded

In this section, we present a brief explanation of the following Scilab 5.1 session,
where the function sinus is applied to the number π.

-->format (10)
ans =

0.
-->sin(%pi)
ans =

1.225D-16

This article is too short to make a complete presentation of the computation of
elementary functions. The interested reader may consider the direct analysis of the
Fdlibm library as very instructive [47]. Muller presents in ”Elementary Functions”
[36] a complete discussion on this subject.

In Scilab, the sin function is connected to a fortran source code (located in the
sci f sin.f file), where we find the following algorithm:

do i = 0 , mn - 1
y(i) = sin(x(i))

enddo

The mn variable contains the number of elements in the matrix, which is stored as
the raw array x. This implies that no additionnal algorithm is performed directly
by Scilab and the sin function is computed by the mathematical library provided by
the compiler, i.e. by gcc under Linux and by Intel’s Visual Fortran under Windows.

Let us now analyze the algorithm which is performed by the mathematical library
providing the sin function. In general, the main structure of these algorithms is the
following:

• scale the input x so that in lies in a restricted interval,

• use a polynomial approximation of the local behavior of sin in the neighbor-
hood of 0.

In the Fdlibm library for example, the scaling interval is [−π/4, π/4]. The poly-
nomial approximation of the sin function has the general form

sin(x) ≈ x+ a3x
3 + . . .+ a2n+1x

2n+1 (275)

≈ x+ x3p(x2) (276)

In the Fdlibm library, 6 terms are used.
For the atan function, which is used to compute an approximated value of π, the

process is the same. This leads to a rounding error in the representation of π which
is computed by Scilab as 4*atan(1.0). All these operations are guaranteed with
some precision, when applied to a number in the scaled interval. For inputs outside
the scaling interval, the accuracy depends on the algorithm used for the scaling.
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All in all, the sources of errors in the floating point computation of sin(π) are
the following

• the error of representation of π,

• the error in the scaling,

• the error in the polynomial representation of the function sin.

The error of representation of π by a binary floating point number is somewhat
hidden by the variable name %pi. In fact, we should really say that %pi is the
best possible binary double precision floating point number representation of the
mathematical π number. Indeed, the exact representation of π would require an
infinite number of bits. This is not possible, which leads to rounding.

In fact the exact number π is between two consecutive floating point numbers:

7074237752028440 · 21−53+1 < π < 7074237752028441 · 21−53+1. (277)

In our case, the distance from the exact π to its two nearest floating point numberss
is

|0.1− 7074237752028440 · 21−53+1| = 1.22 · · · 10−16, (278)

|0.1− 7074237752028441 · 21−53+1| = 3.21 · · · 10−16. (279)

(The previous computation is performed with a symbolic computation system, not
with Scilab). Therefore, the nearest is 7074237752028440 · 21−53+1. With a symbolic
computation system, we find:

sin(7074237752028440 · 21−53+1) = 1.22464679914735317e− 16. (280)

We see that Scilab has produced a result which has the maximum possible number
of significant digits.

We see that the rounding of %pi has a tremendous effect on the computed value
of sin(%pi), which is clearly explained by the condition number of this particular
computation.

The condition number of the a smooth single variable function f(x) is c(x) =
|xf ′(x)/f(x)|. For the sine function, this is c(x) = |x cos(x)/ sin(x). This function is
large when x is large or when x is an integer multiple of π. In the following session,
we compute the condition number of the sine function at the point x=%pi.

-->abs(%pi*cos(%pi)/sin(%pi))
ans =

2.565D+16

With such a large condition number, any change in the last significant bit of x=%pi
changes the first significant bit of sin(x). This explains why computing sin(%pi)

is numerically challenging.
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7.3 One more step

In fact, it is possible to reduce the number of significant digits of the sine function
to as low as 0 significant digits. We mathematical have sin(2nπ) = 0, but this can
be very inaccurate with floating point numbers. In the following Scilab session, we
compute sin(210iπ) for i = 1 to 5.

-->sin (2.^(10*(1:5)).* %pi).’
ans =
- 0.0000000000001254038322
- 0.0000000001284092832066
- 0.0000001314911060035225
- 0.0001346468921407542141
- 0.1374419777062635961151

For sin(250π), the result is very far from being zero. This computation may sound
extreme, but it must be noticed that it is inside the IEEE double precision range
of values, since 250 ≈ 3.1015 � 10308. If accurate computations of the sin function
are required for large values of x (which is rare in practice), the solution may be to
use multiple precision floating point numbers, such as in the MPFR library [35, 14],
based on the Gnu Multiple Precision library [17].
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