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Abstract

In this document, we present programming in Scilab. In the first part,
we present the management of the memory of Scilab. In the second part, we
present various data types and analyze programming methods associated with
these data structures. In the third part, we present features to design flexible
and robust functions. In the last part, we present methods which allow to
achieve good performances. We emphasize the use of vectorized functions,
which allow to get the best performances, based on calls to highly optimized
numerical libraries. Many examples are provided, which allow to see the
effectiveness of the methods that we present.
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1 Introduction

This document is an open-source project. The ETEXsources are available on the
Scilab Forge:

http://forge.scilab.org/index.php/p/docprogscilab

The IXTEXsources are provided under the terms of the Creative Commons Attribution-
ShareAlike 3.0 Unported License:

http://creativecommons.org/licenses/by-sa/3.0

The Scilab scripts are provided on the Forge, inside the project, under the scripts
sub-directory. The scripts are available under the CeCiLL licence:

http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt

2 Variable and memory management

In this section, we describe several Scilab features which allow to manage the vari-
ables and the memory. Indeed, we sometimes face large computations, so that, in
order to get the most out of Scilab, we must increase the memory available for the
variables.

We begin by presenting the stack which is used by Scilab to manage its memory.
We present how to use the stacksize function in order to configure the size of the
stack. Then we analyze the maximum available memory for Scilab, depending on the
limitations of the operating system. We briefly present the who function, as a tool
to inquire about the variables currently defined. Then we emphasize the portability
variables and functions, so that we can design scripts which work equally well on
various operating systems. We present the clear function, which allows to delete
variables when there is no memory left. Finally, we present two functions often used
when we want to dynamically change the behavior of an algorithm depending on
the type of a variable, that is, we present the type and typeof functions.

The informations presented in this section will be interesting for those users who
want to have a more in-depth understanding of the internals of Scilab. By the way,
explicitely managing the memory is a crucial feature which allows to perform the
most memory demanding computations. The commands which allow to manage
variables and the memory are presented in figure 1.

In the first section, we analyze the management of the stack and present the
stacksize function. Then we analyze the maximum available memory depending
on the operating system. In the third section, we present the who function, which
displays the list of current variables. We emphasize in the fourth section the use
of portability variables and functions, which allows to design scripts which work
equally well on most operating systems. Then we present the clear function, which
allows to destroy an existing variable. In the final section, we present the type and
typeof functions, which allows to dynamically compute the type of a variable.


http://forge.scilab.org/index.php/p/docprogscilab
http://creativecommons.org/licenses/by-sa/3.0
http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt

clear kills variables

clearglobal Kkills global variables

global define global variable

isglobal check if a variable is global
stacksize set scilab stack size

gstacksize  set/get scilab global stack size
who listing of variables

who_user  listing of user’s variables

whos listing of variables in long form

Figure 1: Functions to manage variables.

Stack (100%)

Free (e.g. 50%)

User Variables (e.g. 40%)

Internal Variables (e.g. 10%)

Figure 2: The stack of Scilab.

2.1 The stack

In Scilab v5 (and previous versions), the memory is managed with a stack. At
startup, Scilab allocates a fixed amount of memory to store the variables of the
session. Some variables are already predefined at startup, which consumes a little
amount of memory, but most of the memory is free and left for the user. Whenever
the user defines a variable, the associated memory is consumed inside the stack, and
the corresponding amount of memory is removed from the part of the stack which
is free. This situation is presented in the figure 2. When there is no free memory
left in the stack, the user cannot create a new variable anymore. At this point, the
user must either destroy an existing variable, or increase the size of the stack.

There is always some confusion about bit and bytes, their symbols and their
units. A bit (binary digit) is a variable which can only be equal to 0 or 1. A byte
(denoted by B) is made of 8 bits. There are two different types of unit symbols for
multiples of bytes. In the decimal unit system, one kilobyte is made of 1000 bytes,
so that the symbols used are KB (10 bytes), MB (10° bytes), GB (10° bytes) and
more (such as TB for terabytes and PB for petabytes). In the binary unit system,
one kilobyte is made of 1024 bytes, so that the symbols are including a lower case
letter 7i” in their units: KiB, MiB, etc... In this document, we use only the decimal
unit system.

The stacksize function allows to inquire about the current state of the stack.
In the following session, executed after Scilab’s startup, we call the stacksize in



order to retrieve the current properties of the stack.

-->stacksize ()
ans =
5000000. 33360.

The first number, 5 000 000, is the total number of 64 bits words which can be
stored in the stack. The second number, 33 360, is the number of 64 bits words
which are already used. That means that only 5 000 000 - 33 360 = 4 966 640
words of 64 bits are free for the user.

The number 5 000 000 is equal to the number of 64 bits double precision floating
point numbers (i.e. "doubles”) which could be stored, if the stack contained only
that type of data. The total stack size 5 000 000 corresponds to 40 MB, because 5
000 000 * 8 = 40 000 000. This memory can be entirely filled with a dense square
2236-by-2236 matrix of doubles, because v/5000000 == 2236.

In fact, the stack is used to store both real values, integers, strings and more
complex data structures as well. When a 8 bits integer is stored, this corresponds to
1/8th of the memory required to store a 64 bits word (because 8*8 = 64). In that
situation, only 1/8th of the storage required to store a 64 bits word is used to store
the integer. In general, the second integer is stored in the 2/8th of the same word,
so that no memory is lost.

The default setting is probably sufficient in most cases, but might be a limitation
for some applications.

In the following Scilab session, we show that creating a random 2300 x 2300
dense matrix generates an error, while creating a 2200 x 2200 matrix is possible.

-->A=rand (2300,2300)
!--error 17
rand: stack size exceeded
(Use stacksize function to increase it).

-->clear A
-->A=rand (2200,2200) ;

In the case where we need to store larger datasets, we need to increase the size
of the stack. The stacksize("max") statement allows to configure the size of the
stack so that it allocates the maximum possible amount of memory on the system.
The following script gives an example of this function, as executed on a Gnu/Linux
laptop with 1 GB memory. The format function is used so that all the digits are
displayed.

-->format (25)
-->stacksize ("max")
-->stacksize ()

ans =
28176384. 35077.

We can see that, this time, the total memory available in the stack corresponds
to 28 176 384 units of 64 bits words, which corresponds to 225 MB (because 28 176
384 * 8 = 225 411 072). The maximum dense matrix which can be stored is now
5308-by-5308 because /28176384 ~ 5308.

In the following session, we increase the size of the stack to the maximum and
create a 3000-by-3000 dense, square, matrix of doubles.



-->stacksize ("max"
-->A=rand (3000,3000) ;

Let us consider a Windows XP 32 bits machine with 4 GB memory. On this
machine, we have installed Scilab 5.2.2. In the following session, we define a 12
000-by-12 000 dense square matrix of doubles. This corresponds to approximately
1.2 GB of memory.

-->stacksize ("max")
-->format (25)
-->stacksize ()
ans =
152611536. 36820.
-->sqrt (152611536)
ans =
12353.604170443539260305
-->A=zeros (12000,12000);

We have given the size of dense matrices of doubles, in order to get a rough idea
of what these numbers correspond to in practice. Of course, the user might still be
able to manage much larger matrices, for example if they are sparse matrices. But,
in any case, the total used memory can exceed the size of the stack.

Scilab version 5 (and before) can address 23! ~ 2.1 x 10% bytes, i.e. 2.1 GB of
memory. This corresponds to 231 /8 = 268435456 doubles, which could be filled by
a 16 384-by-16 384 dense, square, matrix of doubles. This limitation is caused by
the internal design of Scilab, whatever the operating system. Moreover, constraints
imposed by the operating system may further limit that memory. These topics are
detailed in the next section, which present the internal limitations of Scilab and the
limitations caused by the various operating systems that Scilab can run on.

2.2 More on memory management

In this section, we present more details about the memory available in Scilab from
a user’s point of view. We separate the memory limitations caused by the design
of Scilab on one hand, from the limitations caused by the design of the operating
system on the other hand.

In the first section, we analyze the internal design of Scilab and the way the
memory is managed by 32 bits signed integers. Then we present the limitation of
the memory allocation on various 32 and 64 bits operating systems. In the last
section, we present the algorithm used by the stacksize function.

These sections are rather technical and may be skipped by most users. But users
who experience memory issues or who wants to know what are the exact design issues
with Scilab v5 may be interested in knowing the exact reasons of these limitations.

2.2.1 Memory limitations from Scilab

Scilab version 5 (and before) addresses its internal memory (i.e. the stack) with 32
bits signed integers, whatever the operating system it runs on. This explains why
the maximum amount of memory that Scilab can use is 2.1 GB. In this section, we
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Figure 3: Detail of the management of the stack. — Addresses are managed explicitly
by the core of Scilab with 32 bits signed integers.

present how this is implemented in the most internal parts of Scilab which manage
the memory.

In Scilab, a gateway is a C or Fortran function which provides a particular
function to the user. More precisely, it connects the interpreter to a particular set
of library functions, by reading the input arguments provided by the user and by
writing the output arguments required by the user.

For example, let us consider the following Scilab script.

x = 3

y = sin(x)
Here, the variables x and y are matrices of doubles. In the gateway of the sin
function, we check the number of input arguments and their type. Once the variable
x is validated, we create the output variable y in the stack. Finally, we call the sin
function provided by the mathematical library and put the result into y.

The gateway explicitely accesses to the addresses in the stack which contain the
data for the x and y variables. For that purpose, the header of a Fortran gateway
may contain a statement such as:

integer il

where i1 is a variable which stores the location in the stack which stores the variable
to be used. Inside the stack, each address corresponds to one byte and is managed
explicitly by the source code of each gateway. The integers represents various lo-
cations in the stack, i.e. various addresses of bytes. The figure 3 present the way
that Scilab’s vb core manages the bytes in the stack. If the integer variable il is
associated with a particular address in the stack, the expression i1+1 identifies the
next address in the stack.

Each variable is stored as a couple associating the header and the data of the
variable. This is presented in the figure 4, which presents the detail of the header
of a variable. The following Fortran source code is typical of the first lines in a
legacy gateway in Scilab. The variable il contains the address of the beginning of
the current variable, say x for example. In the actual source code, we have already
checked that the current variable is a matrix of doubles, that is, we have checked
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Figure 4: Detail of the management of the stack. — Each variable is associated with
a header which allows to access to the data.

the type of the variable. Then, the variable m is set to the number of rows of the
matrix of doubles and the variable n is set to the number of columns. Finally, the
variable it is set to 0 if the matrix is real and to 1 if the matrix is complex (i.e.
contains both a real and an imaginary part).

m=istk(il+1)

n=istk (il+2)
it=istk (il+3)

As we can see, we simply use expressions such as il+1 or i1+2 to move from one
address to the other, that is, from one byte to the next. Because of the integer
arithmetic used in the gateways on integers such as i1, we must focus on the range
of values that can achieve this particular data type.

The Fortran integer data type is a signed 32 bits integer. A 32 bits signed
integers ranges from —23! =-2 147 483 648 to 231 — 1 = 2 147 483 647. In the core
of Scilab, we do not use negative integer values to identifies the addresses inside the
stack. This directly implies that no more that 2 147 483 647 bytes, i.e. 2.1 GB can
be addressed by Scilab.

Because there are so many gateways in Scilab, it is not straightforward to move
the memory management from a stack to a more dynamic memory allocation. This
is the project of the version 6 of Scilab, which is currently in development and will
appear in the coming years.

The limitations associated with various operating systems are analyzed in the
next sections.

2.2.2 Memory limitations of 32 and 64 bit systems

In this section, we analyze the memory limitations of Scilab v5, depending on the
version of the operating system where Scilab runs.

On 32 bit operating systems, the memory is addressed by the operating system
with 32 bits unsigned integers. Hence, on a 32 bit system, we can address 4.2 GB,
that is, 232 =4 294 967 296 bytes. Depending on the particular operating system
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(Windows, Linux) and on the particular version of this operating system (Windows
XP, Windows Vista, the version of the Linux kernel, etc...), this limit may or may
not be achievable.

On 64 bits systems, the memory is addressed by the operating system with 64 bits
unsigned integers. Therefore, it would seem that the maximum available memory
in Scilab would be 254 ~ 1.8 x 10'® GB. This is larger than any available physical
memory on the market (at the time this document is written).

But, be the operating system a 32 or a 64 bits, be it a Windows or a Linux, the
stack of Scilab is still managed internally with 32 bits signed integers. Hence, no
more than 2.1 GB of memory is usable for Scilab variables which are stored inside
the stack.

In practice, we may experience that some particular linear algebra or graphical
feature works on 64 bits systems while it does not work on a 32 bits system. This
may be caused, by a temporary use of the operating system memory, as opposed
to the stack of Scilab. For example, the developer may have used the malloc/free
functions instead of using a part of the stack. It may also happen that the memory
is not allocated by the Scilab library, but, at a lower level, by a sub-library used by
Scilab. In some cases, that is sufficient to make a script pass on a 64 bits system,
while the same script can fail on a 32 bits system.

2.2.3 The algorithm in stacksize

In this section, we present the algorithm used by the stacksize function to allocate
the memory.

When the stacksize("max") statement is called, we first compute the size of
the current stack. Then, we compute the size of the largest free memory region.
If the current size of the stack is equal to the largest free memory region, we im-
mediately return. If not, we set the stack size to the minimum, which allocates
the minimum amount of memory which allows to save the currently used memory.
The used variables are then copied into the new memory space and the old stack is
de-allocated. Then we set the stack size to the maximum.

We have seen that Scilab can address 23! ~ 2.1 x 10° bytes, i.e. 2.1 GB of
memory. In practice, it might be difficult or even impossible to allocate such a large
amount of memory. This is partly caused by limitations of the various operating
systems on which Scilab runs, which is analyzed in the next section.

2.3 The list of variables and the function who

The following script shows the behavior of the who function, which shows the current
list of variables, as well as the state of the stack.

-->who

Your variables are:

WSCI home scinoteslib modules_managerlib

atomsguilib atomslib matiolib parameterslib
simulated_annealinglib genetic_algorithmslib umfpacklib fft
scicos_autolib scicos_utilslib xcoslib spreadsheetlib
demo_toolslib development_toolslib soundlib texmacslib
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SCI the installation directory of the current Scilab installation
SCIHOME the directory containing user’s startup files

MSDOS true if the current operating system is Windows

TMPDIR  the temporary directory for the current Scilab’s session

Figure 5: Portability variables.

tclscilib m2scilib maple2scilablib compatibility_functilib
statisticslib windows_toolslib timelib stringlib
special_functionslib sparselib signal_processinglib hz
hs polynomialslib overloadinglib optimsimplexlib
optimbaselib neldermeadlib optimizationlib interpolationlib
linear_algebralib jvmlib output_streamlib iolib
integerlib dynamic_linklib uitreelib guilib
data_structureslib cacsdlib graphic_exportlib datatipslib
graphicslib fileiolib functionslib elementary_functionslib
differential_equationlib helptoolslib corelib PWD
htk %pvm MSDOS WF
T /nan %inf SCI
SCIHOME TMPDIR %hgui hEftw
$ YA+ Wt %eps
%io i %e %pi
using 7936 elements out of 5000000.
and 80 variables out of 9231.

Your global variables are:

%modalWarning demolist %driverName %exportFileName
using 601 elements out of 999.
and 4 variables out of 767.

All the variables which names are ending with ”"lib” (as optimizationlib for
example) are associated with Scilab’s internal function libraries. Some variables
starting with the ”%” character, i.e. %i, %e and %pi, are associated with predefined
Scilab variables because they are mathematical constants. Other variables which
name start with a ”%” character are associated with the precision of floating point
numbers and the IEEE standard. These variables are %eps, %nan and %inf. Upcase
variables SCI, SCIHOME, MSDOS and TMPDIR allow to create portable scripts, i.e.
scripts which can be executed independently of the installation directory or the
operating system. These variables are described in the next section.

2.4 Portability variables and functions

There are some predefined variables and functions which allow to design portable
scripts, that is, scripts which work equally well on Windows, Linux or Mac. These
variables are presented in the figures 5 and 6. These variables and functions are
mainly used when creating external modules, but may be of practical value in a
large set of situations.

In the following session, we check the values of some pre-defined variables on a
Linux machine.

-->SCI
SCI =
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[0S,Version]=getos() the name of the current operating system
f = fullfile(pl,p2,...) builds a file path from parts
s = filesep() the Operating-System specific file separator

Figure 6: Portability functions.

/home/myname/Programs/Scilab-5.1/scilab-5.1/share/scilab
-->SCIHOME
SCIHOME =
/home/myname/.Scilab/scilab-5.1
-->MSDO0S
MSDOS =
F
-->TMPDIR
TMPDIR =
/tmp/SD_8658_

The TMPDIR variable, which contains the name of the temporary directory, is as-
sociated with the current Scilab session: each Scilab session has a unique temporary
directory.

Scilab’s temporary directory is created by Scilab at startup (and is not destroyed
when Scilab quits). In practice, we may use the TMPDIR variable in test scripts where
we have to create temporary files. This way, the file system is not polluted with
temporary files and there is a little less chance to overwrite important files.

We often use the SCIHOME variable to locate the .startup file on the current
machine.

In order to illustrate the use of the SCIHOME variable, we consider the problem
of finding the .startup file of Scilab.

For example, we sometimes load manually some specific external modules at the
startup of Scilab. To do so, we insert exec statements in the .startup file, which
is automatically loaded at the Startup of Scilab. In order to open the .startup file,
we can use the following statement.

editor (fullfile (SCIHOME,".scilab"))

Indeed, the fullfile function creates the absolute directory name leading from the
SCIHOME directory to the .startup file. Moreover, the fullfile function automat-
ically uses the directory separator corresponding to the current operating system:
/ under Linux and \ under Windows. The following session shows the effect of the
fullfile function on a Windows operating system.

-->fullfile (SCIHOME,".scilab")

ans =
C:\DOCUME~1\Root\APPLIC~1\Scilab\scilab-5.3.0-beta-2\.scilab

The function filesep returns a string representing the directory separator on
the current operating system. In the following session, we call the filesep function
under Windows.

-->filesep ()

ans =

\
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Under Linux systems, the filesep function returns ” /7.

There are two features which allow to get the current operating system in Scilab:
the getos function and the MSDOS variable. Both features allow to create scripts
which manage particular settings depending on the operating system. The getos
function allows to manage uniformly all operating systems, which leads to an im-
proved portability. This is why we choose to present this function first.

The getos function returns a string containing the name of the current operating
system and, optionally, its version. In the following session, we call the getos
function on a Windows XP machine.

-->[0S,Version]l=getos ()
Version =

XP

0s =

Windows

The getos function may be typically used in select statements such as the follow-
ing.

0S=getos ()
select O0S
case "Windows" then
disp("Scilab on Windows")
case "Linux" then
disp("Scilab on Linux")
case "Darwin" then
disp("Scilab on MacOs")
else
error ("Scilab on Unknown platform")
end

A typical use of the MSDOS variable is presented in the following script.

if ( MSDOS ) then

// Windows statements
else

// Linux statements
end

In practice, consider the situation where we want to call an external program
with the maximum possible portability. Assume that, under Windows, this program
is provided by a ”.bat” script while, under Linux, this program is provided by a ”.sh”
script. In this situation, we might write a script using the MSDOS variable and the
unix function, which executes an external program. Despite its name, the unix
function works equally under Linux and Windows.

if ( MSDOS ) then
unix ("myprogram.bat")
else

unix ("myprogram.sh")
end

The previous example shows that it is possible to write a portable Scilab program
which works in the same way under various operating systems. The situation might
be more complicated, because it often happens that the path leading to the program
is also depending on the operating system. Another situation is when we want to
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compile a source code with Scilab, using, for example, the ilib_for link or the
tbx_build_src functions. In this case, we might want to pass to the compiler some
particular option which depends on the operating system. In all these situations,
the MSDOS variable allows to make one single source code which remains portable
across various systems.

The SCI variable allows to compute paths relative to the current Scilab instal-
lation. The following session shows a sample use of this variable. First, we get the
path of a macro provided by Scilab. Then, we combine the SCI variable with a
relative path to the file and pass this to the 1s function. Finally, we concatenate the
SCI variable with a string containing the relative path to the script and pass it to
the editor function. In both cases, the commands do not depend on the absolute
path to the file, which make them more portable.

-->get_function_path("numdiff")

ans =

/home/myname/Programs/Scilab-5.1/scilab-5.1/...

share/scilab/modules/optimization/macros/numdiff.sci

-->filename=fullfile (SCI,"modules","optimization", ..
-->"macros","numdiff.sci");
-->1s(filename)

ans =

/home/myname/Programs/Scilab-5.1/scilab-5.1/...

share/scilab/modules/optimization/macros/numdiff.sci
-->editor(filename)

In common situations, it often seems to be more simple to write a script only for
a particular operating system, because this is the one that we use at the time that we
write it. In this case, we tend to use tools which are not available on other operating
systems. For example, we may rely on the particular location of a file, which can
be found only on Linux. Or we may use some OS-specific shell or file management
instructions. In the end, a useful script has a high probability of being used on an
operating system which was not the primary target of the original author. In this
situation, a lot of time is wasted in order to update the script so that it can work
on the new platform.

Since Scilab is itself a portable language, it is most of the time a good idea to
think of the script as being portable right from the start of the development. If
there is a really difficult and unavoidable issue, it is of course reasonable to reduce
the portability and to simplify the task so that the development is shortened. In
practice, this happens not so often as it appears, so that the usual rule should be to
write as portable a code as possible.

2.5 Destroying variables : clear

A variable can be created at will, when it is needed. It can also be destroyed
explicitly with the clear function, when it is not needed anymore. This might
be useful when a large matrix is currently stored in memory and if the memory is
becoming a problem.

In the following session, we define a large random matrix A. When we try to
define a second matrix B, we see that there is no memory left. Therefore, we use the
clear function to destroy the matrix A. Then we are able to create the matrix B.
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type Returns a string
typeof Returns a floating point integer

Figure 7: Functions to compute the type of a variable.

|

|
\4
=

L}

rand (2000,2000) ;
rand (2000,2000) ;
l--error 17
rand: stack size exceeded
(Use stacksize function to increase it).
-->clear A
-->B = rand (2000,2000);

|

|
\'2
o

1

The clear function should be used only when necessary, that is, when the com-
putation cannot be executed because of memory issues. This warning is particularly
true for the developers who are used to compiled languages, where the memory is
managed explicitly. In the Scilab language, the memory is managed by Scilab and,
in general, there is no reason to manage it ourselves.

An associated topic is the management of variables in functions. When the body
of a function has been executed by the interpreter, all the variables which have been
used in the body ,and which are not output arguments, are deleted automatically.
Therefore, there is no need for explicit calls to the clear function in this case.

2.6 The type and typeof functions

Scilab can create various types of variables, such as matrices, polynomials, booleans,
integers and other types of data structures. The type and typeof functions allow
to inquire about the particular type of a given variable. The type function returns
a floating point integer while the typeof function returns a string. These functions
are presented in the figure 7.

The figure 8 presents the various output values of the type and typeof functions.

In the following session, we create a 2 x 2 matrix of doubles and use the type
and typeof to get the type of this matrix.

-->A=eye (2,2)
A

=l

. 1.
-->type (A)
ans =

(@]

1.
-->typeof (A)
ans =
constant

These two functions are useful when processing the input arguments of a function.
This topic will be reviewed later in this document, in the section 4.2.5, when we
consider functions with variable type input arguments.

When the type of the variable is a tlist or a mlist, the value returned by the
typeof function is the first string in the first entry of the list. This topic is reviewed
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type typeof Detail
1 ”constant” real or complex constant matrix
2 "polynomial” polynomial matrix
4 "boolean” boolean matrix
) "sparse” sparse matrix
6 "boolean sparse” sparse boolean matrix
7 "Matlab sparse” Matlab sparse matrix
8 7int8”, 7int16”, matrix of integers stored
7int32” 7 uint8”, on 1 2 or 4 bytes
"uint16” or "uint32”
9 "handle” matrix of graphic handles
10 "string” matrix of character strings
11 ”function” un-compiled function (Scilab code)
13 ”function” compiled function (Scilab code)
14 "library function library
15 " list” list
16 "rational”, "state-space”  typed list (tlist)
or the type
17 "hypermat”, ”st”, ”ce” matrix oriented typed list (mlist)
or the type
128  ”pointer” sparse matrix LU decomposition
129  7size implicit” size implicit polynomial used for indexing
130 "fptr” Scilab intrinsic (C or Fortran code)

Figure 8: The returned values of the type and typeof function.

in the section 3.6, where we present typed lists.
The data types cell and struct are special forms of mlists, so that they are
associated with a type equal to 17 and with a typeof equal to "ce” and "st”.

2.7 Notes and references

It is likely that, in future versions of Scilab, the memory of Scilab will not be
managed with a stack. Indeed, this features is a legacy of the ancestor of Scilab,
that is Matlab. We emphasize that Matlab does not use a stack since a long time,
approximately since the 1980s, at the time where the source code of Matlab was
re-designed[41]. On the other hand, Scilab kept this rather old way of managing its
memory.

Some additional details about the management of memory in Matlab are given in
[34]. In the technical note [35], the authors present methods to avoid memory errors
in Matlab. In the technical note [36], the authors present the maximum matrix
size avaiable in Matlab on various platforms. In the technical note [37], the authors
presents the benefits of using 64-bit Matlab over 32-bit Matlab.
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2.8 Exercises

Exercise 2.1 (Mazimum stack size) Check the maximum size of the stack on your current
machine.

Exercise 2.2 (who_user) Start Scilab, execute the following script and see the result on your
machine.

who_user ()
A=ones (100,100);
who_user ()

Exercise 2.3 (whos) Start Scilab, execute the following script and see the result on your machine.

whos ()

3 Special data types

In this section, we analyze Scilab data types which are the most commonly used
in practice. We review strings, integers, polynomials, hypermatrices, 1lists and
tlists. We present some of the most useful features of the overloading system,
which allows to define new behaviors for typed lists. In the last section, we briefly
review the cell, the struct and the mlist, and compare them with other data
structures.

3.1 Strings

Although Scilab is not primarily designed as a tool to manage strings, it provides
a consistent and powerful set of functions to manage this data type. A list of
commands which are associated with Scilab strings is presented in figure 9.
In order to create a matrix of strings, we can use the ” " ”character and the usual
syntax for matrices. In the following session, we create a 2 x 3 matrix of strings.
-->x = ["11111" "22" "333"; "4444" "5" "666"]
x =

111111 22 333 |
! !

14444 5 666 !

In order to compute the size of the matrix, we can use the size function, as for
usual matrices.
-->size(x)

ans =
2. 3.

The length function, on the other hand, returns the number of characters in each
of the entries of the matrix.
-->length(x)
ans =

5. 2. 3.
4. 1. 3.
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string

conversion to string

sci2exp converts an expression to a string

ascii string ascii conversions

blanks create string of blank characters

convstr case conversion

emptystr zero length string

grep find matches of a string in a vector of strings

justify justify character array

length length of object

part extraction of strings

regexp find a substring that matches the regular expression string
strcat concatenate character strings

strchr find the first occurrence of a character in a string

stremp compare character strings

strempi compare character strings (case independent)

strespn get span until character in string

strindex search position of a character string in an other string
stripblanks ~ strips leading and trailing blanks (and tabs) of strings
strncmp copy characters from strings

strrchr find the last occurrence of a character in a string

strrev returns string reversed

strsplit split a string into a vector of strings

strspn get span of character set in string

strstr locate substring

strsubst substitute a character string by another in a character string
strtod convert string to double

strtok split string into tokens

tokenpos returns the tokens positions in a character string

tokens returns the tokens of a character string

str2code return Scilab integer codes associated with a character string
code2str returns character string associated with Scilab integer codes

Figure 9: Scilab string functions.
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Perhaps the most common string function that we use is the string function.
This function allows to convert its input argument into a string. In the following
session, we define a row vector and use the string function to convert it into a
string. Then we use the typeof function and check that the str variable is indeed
a string. Finally, we use the size function and check that the str variableisa 1 x5
matrix of strings.

-->x = [1 2 3 4 5];
-->str = string(x)
str =

1T 2 3 4 5 |
-->typeof (str)

ans =
string
-->size(str)
ans =

1. 5.

The string function can take any type of input argument.

We will see later in this document that a t1ist can be used to define a new data
type. In this case, we can define a function which makes so that the string function
can work on this new data type in a user-defined way. This topic is reviewed in the
section 3.8, where we present a method which allows to define the behavior of the
string function when its input argument is a typed list.

The strcat function concatenates its first input argument with the separator
defined in the second input argument. In the following session, we use the strcat
function to produce a string representing the sum of the integers from 1 to 5.

-->strcat (["1" "2" "3" vgr vgn] n4n)

ans =
1+2+3+4+5

We may combine the string and the strcat functions to produce strings which
can be easily copied and pasted into scripts or reports. In the following session,
we define the row vector x which contains floating point integers. Then we use
the strcat function with the blank space separator to produce a clean string of
integers.

-->x = [1 2 3 4 5]
X

=

2. 3. 4. 5.
-->strcat(string(x)," ")
ans =
1 23 405

The previous string can be directly copied and pasted into a source code or a report.
Let us consider the problem of designing a function which prints data in the console.
The previous combination of function is an efficient way of producing compact mes-
sages. In the following session, we use the mprintf function to display the content
of the x variable. We use the %s format, which corresponds to strings. In order to
produce the string, we combine the strcat and string functions.

-->mprintf ("x=[%s]\n",strcat(string(x)," "))
x=[1 2 3 4 5]
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isalphanum check if characters are alphanumerics

isascii check if characters are 7-bit US-ASCII

isdigit check if characters are digits between 0 and 9
isletter check if characters are alphabetics letters
isnum check if characters are numbers

Figure 10: Functions related to particular class of strings.

The sci2exp function converts an expression into a string. It can be used with
the same purpose as the previous method based on strcat, but the formatting is
less flexible. In the following session, we use the sci2exp function to convert a row
matrix of integers into a 1 x 1 matrix of strings.

-->x = [1 2 3 4 5];
-->str = sci2exp(x)
str =
[1,2,3,4,5]
-->size(str)

ans =
1. 1.

7.0

Comparison operators, such as 7{” or ”;” for example, are not defined when
strings are used, i.e., the statement "a" < "b" produces an error. Instead, the
strcmp function can be used for that purpose. It returns 1 if the first argument
is lexicographically less than the second, it returns 0 if the two strings are equal,
or it returns -1 if the second argument is lexicographically less than the first. The
behavior of the strcmp function is presented in the following session.

——>strcmp("a" , "b")

ans =
- 1.
-->strcmp("a","a")
ans =
0.
-->strcmp("b","a")
ans =
1.

The functions presented in the table 10 allow to distinguish between various
classes of strings such as ASCII characters, digits, letters and numbers.

For example, the isdigit function returns a matrix of booleans, where each
entry i is true if the character at index i in the string is a digit. In the following
session, we use the isdigit function and check that "0" is a digit, while "d" is not.

-->isdigit("0")
ans =
T

-->isdigit ("12")
ans =
T T

-->isdigit ("d3s4")
ans =
FTFT
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polynomial a polynomial, defined by its coefficients
rational a ratio of two polynomials

Figure 11: Data types related to polynomials.

A powerful regular expression engine is available from the regexp function. This
feature has been included in Scilab version 5. It is based on the PCRE library [22],
which aims at being PERL-compatible. The pattern must be given as a string, with
surrounding slashes of the form "/x/", where x is the regular expression.

We present a sample use of the regexp function in the following session. The i
at the end of the regular expression indicates that we do not want to take the case
into account. The first a letter forces the expression to match only the strings which
begins with this letter.

-->regexp ("AXYZC","/a.*?c/1i")

ans =
1.

Regular expressions are an extremely powerful tool for manipulating text and
data. Obviously, this document cannot even scratch the surface of this topic. For
more informations about the regexp function, the user may read the help page
provided by Scilab. For a deeper introduction, the reader may be interested in
Friedl’s [20]. As expressed by J. Friedl, "regular expressions allow you to code
complex and subtle text processing that you never imagined could be automated”.

The exercise 3.1 presents a practical example of use of the regexp function.

3.2 Polynomials

Scilab allows to manage univariate polynomials. The implementation is based on
a vector containing the coefficients of the polynomial. At the user’s level, we can
manage a matrix of polynomials. Basic operations like addition, subtraction, multi-
plication and division are available for polynomials. We can, of course, compute the
value of a polynomial p(z) for a particular input x. Moreover, Scilab can perform
higher level operations, such as computing the roots, factoring or computing the
greatest common divisor or the least common multiple of two polynomials. When
we divide one polynomial by another polynomial, we obtain a new data structure
representing the rational function.

In this section, we make a brief review of these topics. The polynomial and
rational data types are presented in the figure 11. Some of the most common
functions related to polynomials are presented in the figure 12. A complete list
of functions related to polynomials is presented in figure 13.

The poly function allows to define polynomials. There are two ways to define
them: by its coefficients, or by its roots. In the following session, we create the
polynomial p(x) = (x—1)(x—2) with the poly function. The roots of this polynomial
are obviously z = 1 and x = 2 and this is why the first input argument of the poly
function is the matrix [1 2]. The second argument is the symbolic string used to
display the polynomial.
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poly defines a polynomial

horner computes the value of a polynomial
coeff coeffcients of a polynomial

degree  degree of a polynomial

roots roots of a polynomial

factors real factorization of polynomials
ged greatest common divisor

lcm least common multiple

Figure 12: Some basic functions related to polynomials.

bezout clean cmndred coeff coffg colcompr degree
denom derivat determ detr diophant factors gcd
hermit horner hrmt htrianr invr lcm lcmdiag
ldiv numer pdiv pol2des pol2str polfact residu
roots rowcompr sfact simp simp_mode sylm systmat

Figure 13: Functions related to polynomials.

-->p=poly ([1 2],"x")
p =
2
2 - 3x + x

In the following session, we call the typeof function and check that the variable p
is a polynomial.
-->typeof (p)

ans =
polynomial

We can also define a polynomial based on its coefficients, in increasing order. In
the following session, we define the g¢(x) = 1 4+ 2z polynomial. We pass the third
argument "coeff" to the poly function, so that it knows that the [1 2] matrix
represents the coefficients of the polynomial.

-->q=poly ([1 2] ,"x","coeff")
q =
1 + 2x
Now that the polynomials p and q are defined, we can perform algebra with them.
In the following session, we add, subtract, multiply and divide the polynomials p
and q.

-—>p+*q
ans =

2

3 - x + x

-—>p-q
ans =

2

1 - bx + x
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-—>p*q
ans =
2 3
2 + x - bx + 2x
-=>r = q/p

2 - 3x + x

When we divide the polynomial p by the polynomial q, we produce the rational
function r. This is illustrated in the following session.
-->typeof (r)

ans =
rational

In order to compute the value of a polynomial p(z) for a particular value of x,
we can use the horner function. In the following session, we define the polynomial
p(x) = (x — 1)(z — 2) and compute its value for the points z =0, z = 1, z = 3 and
x = 3, represented by the matrix [0 1 2 3].

-->p=poly ([1 2],"x"

p =
2
2 - 3x + X
-->horner(p,[0 1 2 3])
ans =
2. 0. 0. 2.

The name of the horner function comes from the mathematician Horner, who de-
signed the algorithm which is used in Scilab to compute the value of a polynomial.
This algorithm reduces the number of multiplications and additions required for this
evaluation (see [26], section 4.6.4, ”Evaluation of Polynomials”).

If the first argument of the poly function is a square matrix, it returns the
characteristic polynomial associated with the matrix. That is, if A is a real n x n
square matrix, the poly function can produce the polynomial det(A — zI) where [
is the n x n identity matrix. This is presented in the following session.

-->A = [1 2;3 4]

A =
1. 2.
3. 4.,
-->p = poly(A,"x")
p =
2
- 2 - bx + X

We can easily check that the previous result is consistent with its mathematical
definition. First, we can compute the roots of the polynomial p with the roots func-
tion, as in the previous session. On the other hand, we can compute the eigenvalues
of the matrix A with the spec function.

-->roots (p)
ans =
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- 0.3722813
5.3722813
-->spec (4A)
ans =
- 0.3722813
5.3722813

There is another way to get the same polynomial p. In the following session, we
define the polynomial px which represents the monomial z. Then we use the det
function to compute the determinant of the matrix B = A — xI. We use the eye
function to produce the 2 x 2 identity matrix.

->px = poly ([0 1],"x","coeff")
px =

X
-->B = A-pxx*eye ()

B =
1 - x 2
3 4 - x
-->det (B)
ans =
2
- 2 - bx + x

If we compare this result to the previous one, we see that they are equal. We see
that the det function is defined for the polynomial A-px*eye (). This is an example
of the fact that many functions are defined for polynomial input arguments.
In the previous session, the matrix B was a 2 x 2 matrix of polynomials. Similarly,

we can define a matrix of rational functions, as presented in the following session.

-->x=poly(0,"x");

-—>A=[1 x;x 1+x"2];

-->B=[1/x 1/(1+x);1/(1+x) 1/x"2]

B =

! 1 1 !
I ————— - !
! X 1 + x !
! !
! 1 1 !
! -—- -—- !
! 2 !
! 1 + x X !

This is a very useful feature of Scilab for systems theory. The link between polyno-
mials, rational functions data types on one hand, and control theory on the other
hand, is analyzed briefly in the section 3.14.

3.3 Hypermatrices

A matrix is a data structure which can be accessed with two integer indices (e.g. i
and 7). Hypermatrices are a generalized type of matrices, which can be addressed
with more than two indices. This feature is familiar to Fortran developers, where
the multi-dimensional array is one of the basic data structures. Several functions
related to hypermatrices are presented in the figure 14.

25



hypermat Creates an hypermatrix

Zeros Creates an matrix or hypermatrix of zeros
ones Creates an matrix or hypermatrix of ones
matrix Create a matrix with new shape

squeeze  Remove dimensions with unit size

Figure 14: Functions related to hypermatrices.

In most situations, we can manage an hypermatrix as a regular matrix. In the
following session, we create the 4 x 3 x 2 hypermatrix of doubles A with the ones
function. Then, we use the size function to compute the size of this hypermatrix.

-->A=ones (4,3,2)

A =
(:,:,1)
1 1. 1
1 1. 1
1 1. 1
1. 1. 1
(:,:,2)
1. 1 1.
1. 1 1.
1. 1 1.
1. 1 1.
-->size (A)
ans =
4. 3. 2.

In the following session, we create a 4-by-2-by-3 hypermatrix. The first argument
of the hypermat function is a matrix containing the number of dimensions of the
hypermatrix.

-->A=hypermat ([4,3,2])
A

(:y:,1)

O O O O~
O O O O
O O O O

2)

O O O O~
O O O O
O O O O

To insert and to extract a value from an hypermatrix, we can use the same syntax
as for a matrix. In the following session, we set and get the value of the (3,1,2)
entry.
-->A(3,1,2)=7
A =
(:,:,1)
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O O O O
O O O O
O O O O

(:,:,2)
0. 0. 0.
0. 0. 0.
7. 0. 0.
0. 0. 0.
-->A(3,1,2)
ans =
7.
The colon ”:” operator can be used for hypermatrix, as in the following session.
-->A(2,:,2)
ans =
0. 0. 0.

Most operations which can be done with matrices can also be done with hy-
permatrices. In the following session, we define the hypermatrix B and add it to
A.

-->B=2 * ones(4,3,2);

-->A + B

ans =

(:,:,1)
3. 3 3
3. 3 3
3. 3 3
3. 3 3

(:,:,2)
3. 3 3.
3. 3 3.
3. 3. 3.
3. 3. 3.

The hypermat function can be used when we want to create an hypermatrix
from a vector. In the following session, we define an hypermatrix with size 2 x 3 x 2,
where the values are taken from the set {1,2,...,12}.

-->hypermat ([2 3 2],1:12)

ans =
(:,:,1)

! 1. 3. 5. !

! 2. 4. 6. !
(:,:,2)

! 7. 9. 11. !
! 8. 10. 12. !

We notice the particular order of the values in the produced hypermatrix. This order
correspond to the rule that the leftmost indices vary first. This is just an extension
of the fact that, for 2 dimensional matrices, the values are stored column-by-column.
An hypermatrix can also contain strings, as shown in the following session.
——>A=hypermat ( [3 s 1 ’2] s ngn s np" R nen , ngn s ngn s nfn])
A =
Ciyiy1)
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la !
! !
L
] ]
lc !
(GIFEIN
Id !
! !
le !
] ]
I f !

An important property of hypermatrices is that all entries must have the same
type. For example, if we try to insert a double into the hypermatrix of strings
created previously, we get an error message such as the following.

-=>A(1,1,1)=0

!--error 43
Not implemented in scilab...

at line 8 of function %s_i_c called by

at line 103 of function generic_i_hm called by
at line 21 of function Y%s_i_hm called by
A(1,1,1)=0

3.4 Type and dimension of an extracted hypermatrix

In this section, we present the extraction of hypermatrices for which one dimension
has a unit size. We present the effect that this may have on performances and
describe the squeeze function.

We may extract slices of hypermatrices, producing various shapes of output
variables. For example, let us consider a 3 dimensional hypermatrix, with size 2-
by-4-by-3. It is sometimes useful to use the colon : operator to extract full rows
or columns of matrices or hypermatrices. For example, the statement A(1,:,:)
extracts the values associated with the first index equal to 1, and produces an
hypermatrix with size 1-by-4-by-3. Similarily, the statement A(:,1,:) extracts the
values associated with the second index equal to 1, and produces an hypermatrix
with size 2-by-1-by-3. On the other hand, the statement A(:,:,1) extracts the
values associated with the third index equal to 1, but produces a matrix with size
4-by-3. Hence, the statement A(:,:,1) does not produce an hypermatrix, but
produces a matrix, that is, the type of the variable changes. Moreover, we see that
the last dimension, which should be equal to one, is just removed from the output
variable. Hence, both the type and the shape of an extracted hypermatrix can be
expected to change, depending on the indices that we extract.

This fact is explored in the following session.

-->A=hypermat ([2,4,3],[1:24])

A =
(:,:,1)

1. 3. 5. 7.

2. 4. 6. 8.
(:,:,2)

9. 11. 13. 15.
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10. 12. 14. 16.

(:,:,3)
17. 19. 21. 23.
18. 20. 22. 24 .

We first experiment the extraction statement B=A(1,:,:).

-->B = A(1,:,:)
B =
(:y:,1)
1. 3. 5. 7.
(:,:,2)
9. 11. 13. 15.
(:,:,3)
17. 19. 21. 23.
-->typeof (B)
ans =
hypermat
-->size(B)
ans =
1. 4. 3.

We may experiment the statement B=A(:,1,:) and we would get a similar behavior.
Instead, we experiment the statement B=A(:,:,1). We see that, in this case, the
extracted variable is a matrix,instead of an hypermatrix.

-->B = A(:,:,1)
B

=l

3. 5. 7.
2. 4. 6. 8.

-->typeof (B)

ans =

constant

-->size(B)

ans =
2. 4.

The general rule is that, if the last dimension of an extracted hypermatrix is
unity, it is removed. This rule can be applied, again, on the result of the extraction,
eventually producing either an hypermatrix, or a regular 2D matrix. More precisely,
when we extract an hypermatrix with shape ni-by-...-by-n;-by-n;;i-by-...-by-ns,
where n; # 1 and nj41 = nj42 = ... = nip = 1, we get an hypermatrix with
shape n;-by-...-by-n;. Moreover, if the extracted hypermatrix is a regular, i.e. two
dimensional, matrix, that is, if j < 2, therefore the extracted variable is a matrix
instead of an hypermatrix. These two rules ensures that Scilab is compatible with
Matlab on the extraction of hypermatrices.

This behavior may have a significant impact on performances of hypermatrices
extraction. In the following script, we create a 2-by-4-by-3 hypermatrix of doubles
and measure the performances of the extraction of either the second or the third
index. We combine the extraction and the matrix statement, in order to produce
a regular 2-dimensional matrix B in both cases. Since this extraction is extremely
fast, we do this 100 000 times within a loop and measure the user time with the tic
and toc functions. We can see that extracting the second dimension is much slower
than extracting the third dimension.
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-->A=hypermat ([2,4,3],1:24);
-->B=matrix(A(:,2,:),2,3)

B =
3. 11. 19.
4. 12. 20.
-->tic();for i=1:100000;B=matrix(A(:,2,:),2,3);end;toc()
ans =
7.832
-->B=matrix(A(:,:,2),2,4)
B =
9. 11. 13. 15.
10. 12. 14. 16.
-->tic();for i=1:100000;B=matrix(A(:,:,2),2,4);end;toc()
ans =
0.88

The reason for this performance difference is that A(:,2,:) is a 2-by-1-by-3
hypermatrix while A(:,:,2) is a regular 2-by-4 matrix.

Indeed, the statement matrix(A(:,2,:),2,3) makes the matrix function to
convert the 2-by-1-by-3 hypermatrix A(:,2,:) into a 2-by-3 matrix, which requires
an extra step from the interpreter. On the other hand, the statement A(:,:,2) is
already a 2-by-4 matrix. Hence, the statement matrix(A(:,:,2),2,4) does not
require any processing from the matrix function, which is a no-op in this case.

We may want to just ignore intermediate sub-matrices with size 1 which are
created by the hypermatrix extraction system. In this case, we can use the squeeze
function, which removes dimensions with unit size.

-->A=hypermat ([3,1,2],1:6)

A =
(:,:,1)

1.

2.

3.
(:,:,2)

4.,

5.

6.
-->size(A)
ans =

3. 1. 2.
-->B=squeeze (A)
B =

1. 4.

2. 5.

3. 6.
-->size(B)
ans =

3. 2.

3.5 The list data type

In this section, we describe the 1ist data type, which is used to manage a collection
of objects of different types. We often use lists when we want to gather in the same
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list create a list

null delete the element of a list

lstcat concatenate lists

size for a list, the number of elements (for a list, same as length)

Figure 15: Functions related to lists.

object a set of variables which cannot be stored into a single, more basic, data type.
A list can contain any of the already discussed data types (including functions) as
well as other lists. This allows to create nested lists, which can be used to create a
tree of data structures. Lists are extremely useful to define structured data objects.
Some functions related to lists are presented in the figure 15.

There are, in fact, various types of lists in Scilab: ordinary lists, typed lists and
mlists. This section focuses on ordinary lists. Typed lists will be reviewed in the
next section. The mlist data type is not presented in this document.

In the following session, we define a floating point integer, a string and a matrix.
Then we use the 1list function to create the list mylist containing these three
elements.

-->myflint = 12;
-->mystr = "foo";
-->mymatrix = [1 2 3 4];
-->mylist = list ( myflint , mystr , mymatrix )
mylist =
mylist (1)
12.
mylist (2)
foo
mylist (3)
1. 2. 3. 4.

Once created, we can access to the i-th element of the list with the mylist (i)
statement, as in the following session.

-->mylist (1)

ans =
12.
->mylist (2)
ans =
foo
-->mylist (3)
ans =
1. 2. 3. 4.

The number of elements in a list can be computed with the size function.

-->size(mylist)
ans =
3.
In the case where we want to get several elements in the same statement, we can use
the colon ”:” operator. In this situation, we must set as many output arguments as
there are elements to retrieve. In the following session, we get the two elements at
indices 2 and 3 and set the s and m variables.
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-->[s,m] = mylist (2:3)
m
2. 3. 4.

o=

s
foo

The element #3 in our list is a matrix. Suppose that we want to get the 4th value
in this matrix. We can have access to it directly with the following syntax.
-->mylist (3) (4)

ans =
4.

This is much faster than storing the third element of the list into a temporary
variable and to extract its 4th component. In the case where we want to set the
value of this entry, we can use the same syntax and the regular equal ”=" operator,
as in the following session.
-->mylist (3) (4) = 12
mylist =
mylist (1)
12.
mylist (2)
foo
mylist (3)
1. 2. 3. 12.

Obviously, we could have done the same operation with several intermediate opera-
tions: extracting the third element of the list, updating the matrix and storing the
matrix into the list again. But using the mylist(3) (4) = 12 statement is in fact
both simpler and faster.

In order to browse the elements of a list, we can use a straightforward method or a
method based on a particular feature of the for statement. First, the straightforward
method is to count the number of elements in the list with the size function. Then
we access to the elements, one by one, as in the following session.

for i = 1:size(mylist)

e = mylist(i);

mprintf ("Element #%d: type=Ys.\n",i,typeof (e))
end

The previous script produces the following output.

Element #1: type=constant.
Element #2: type=string.
Element #3: type=constant.

There is a simpler way, which uses directly the list as the argument of the for
statement.

-->for e = mylist
--> mprintf ("Type=%s.\n",typeof (e))
-->end

Type=constant.
Type=string.
Type=constant.
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tlist create a typed list

typeof get the type of the given typed list
fieldnames returns all the fields of a typed list
definedfields returns all the fields which are defined
setfield set a field of a typed list

getfield get a field of a typed list

Figure 16: Functions related to tlists.

We can fill a list dynamically by appending new elements at the end. In the
following script, we define an empty list with the 1ist () statement. Then we use
the $+1 operator to insert new elements at the end of the list. This produces exactly
the same list as previously.

mylist = list ();

mylist ($+1) = 12;
mylist ($+1) = "foo";
mylist ($+1) = [1 2 3 4];

3.6 The tlist data type

Typed lists allow to define new data structures which can be customized depending
on the particular problem to be solved. These new data structures behave like basic
Scilab data types. In particular, any regular function such as size, disp or string
can be overloaded so that it has a particular behavior when its input argument
is the new tlist. This allows to extend the features provided by Scilab and to
introduce new objects. Actually, typed list are also used internally by numerous
Scilab functions because of their flexibility. Most of the time, we do not even know
that we are using a list, which shows how much this data type is convenient.

In this section, we will create and use directly a tlist to get familiar with this
data structure. In the next section, we will present a framework which allows to
emulate object oriented programming with typed lists.

The figure 16 presents all the functions related to typed lists.

In order to create a typed list, we use the tlist function, which first argument
is a matrix of strings. The first string is the type of the list. The remaining strings
define the fields of the typed list. In the following session, we define a typed list
which allows to store the informations of a person. The fields of a person are the
first name, the name and the birth year.

-->p = tlist(["person","firstname","name","birthyear"])
p =
p (1)

!person firstname name birthyear !
At this point, the person p is created, but its fields are undefined. In order to set the
fields of p, we use the dot ”.”, followed by the name of the field. In the following
script, we define the three fields associated with an hypothetical Paul Smith, which
birth year is 1997.
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p.-firstname = "Paul";
p.-name = "Smith";
p-birthyear = 1997;

All the fields are now defined and we can use the variable name p in order to see
the content of our typed list, as in the following session.

__>p
p =
p (L)
!person firstname mname birthyear !
p(2)
Paul
p(3)
Smith
p(4)
1997.

In order to get a field of the typed list, we can use the p(i) syntax, as in the
following session.
-->p(2)
ans =
Paul

But it may be more convenient to get the value of the field firstname with the
p.firstname syntax, as in the following session.

-->fn = p.firstname
fn =
Paul

We can also use the getfield function, which takes as input arguments the index
of the field and the typed list.

getfield (2,p)

->fn
fn
Paul

The same syntax can be used to set the value of a field. In the following session,
we update the value of the first name from ”Paul” to ”John”.

-->p.firstname = "John"
p =
p (L)
!person firstname mname birthyear !
p(2)
John
p(3)
Smith
p(4)
1997.

We can also use the setfield function to set the first name field from ”John” to
"Ringo”.
-->setfield(2,"Ringo",p)
p -
p (1)
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!person firstname name birthyear !
p(2)
Ringo
p(3)
Smith
p(4)
1997.

It might happen that we know the values of the fields at the time when we create
the typed list. We can append these values to the input arguments of the tlist
function, in a consistent order. In the following session, we define the person p and
set the values of the fields at the creation of the typed list.

-->p = tlist(

--> ["person","firstname","name","birthyear"],
--> "Paul",
--> "Smith",
-->  1997)
p =
p (L)
!person firstname mname birthyear !
p(2)
Paul
p(3)
Smith
p(4)
1997.

An interesting feature of a typed list is that the typeof function returns the
actual type of the list. In the following session, we check that the type function
returns 16, which corresponds to a list. But the typeof function returns the string
"person”.

-->type (p)
ans =
16.
-->typeof (p)
ans =
person

This allows to dynamically change the behavior of functions for the typed lists with
type "person”. This feature is linked to the overloading of functions, a topic which
will be reviewed in the section 3.8.

We will now consider functions which allow to dynamically retrieve informations
about typed lists. In order to get the list of fields of a "person”, we can use the
p(1) syntax and get a 1 x 4 matrix of strings, as in the following session.

-->p (1)
ans =
!person firstname mname birthyear !

The fact that the first string is the type might be useful or annoying, depending on
the situation. If we only want to get the fields of the typed list (and not the type),
we can use the fieldnames function.

-->fieldnames (p)
ans =

35



lfirstname
|

1
! !
Iname !
! !

!

!'birthyear

When we create a typed list, we may define its fields without setting their values.
The actual value of a field might indeed be set, dynamically, later in the script. In
this case, it might be useful to know if a field is already defined or not. The following
session shows how the definedfields function returns the matrix of floating point
integers representing the fields which are already defined. We begin by defining the
person p without setting any value of any field. This is why the only defined field is
the number 1. Then we set the "firstname” field, which corresponds to index 2.

-->p = tlist(["person","firstname","name","birthyear"])
p =

p (L)
!person firstname mname birthyear !
-->definedfields (p)

ans =
1.
-->p.firstname = "Paul";
-->definedfields (p)
ans =
1. 2.

As we can see, the index 2 has been added to the matrix of defined fields returned
by the definedfields function.

The functions that we have reviewed allows to program typed lists in a very
dynamic way. We will now see how to use the definedfields functions to dynam-
ically compute if a field, identified by its string, is defined or not. This will allow
to get a little bit more practice with typed lists. Recall that we can create a typed
list without actually defining the values of the fields. These fields can be defined
afterward, so that, at a particular time, we do not know if all the fields are defined
or not. Hence, we may need a function isfielddef which would behave as in the
following session.

-->p = tlist(["person","firstname","name","birthyear"]);
-->isfielddef ( p , "name" )
ans =
F
-->p.name = "Smith";
-->isfielddef ( p , "name" )
ans =
T

The topic of the exercise 3.2 is to dynamically compute if the field associated
with a given field, identified by its string, exists in a typed list.

3.7 Emulating OO Programming with typed lists

In this section, we review how typed lists can be used to emulate Object Oriented
Programming (OOP). This discussion has been partly presented on the Scilab wiki

[7].

36



We present a simple method to emulate OOP with current Scilab features. The
suggested method is classical when we want to emulate OOP in a non-OOP language,
for example in C or Fortran. In the first part, we analyze the limitations of functions,
which use positional arguments. Then, we present a method to emulate OOP in
Scilab using typed lists.

In the notes associated with this section, we present similar methods in other
languages. We emphasize the fact that Object Oriented Programming has been
used for decades in non-OOP languages, like C or Fortran for example by methods
which are very similar to the one that we are going to present.

3.7.1 Limitations of positional arguments

Before going into the details, we first present the reasons why emulating OOP in
Scilab is convenient and, sometimes, necessary. Indeed, the method we advocate
may allow to simplify many functions, which are based on optional, positional,
arguments. The fact that the execution, based on the location of the input and
output arguments of a function is a severe limitation in some contexts, as we are
going to see.

For example, the optim primitive is a built-in function which performs uncon-
strained and bound constrained numerical optimization. This function has 20 ar-
guments, some of them being optional. The following is the header of the function,
where square brackets [...] indicate optional parameters.

[f [,xopt [,gradopt [,work]]ll=

optim(costf [,<contr>],x0 [,algo] [,df0 [,mem]] [,work]
[,<stop>] [,<params>] [,imp=iflag]l)

This complicated calling sequence makes the practical use of the optim difficult
(but doable), especially when we want to customize its arguments. For example,
the <params> variable is a list of optional four arguments:

’ti’, valti ,’td’, wvaltd

Many parameters of the algorithm can be configured, but, surprisingly enough,
many more cannot be configured by the user of the optim function. For example,
in the case of the Quasi-Newton algorithm without constraints, the Fortran routine
allows to configure a length representing the estimate of the distance to the optimum.
This parameter cannot be configured at the Scilab level and the default value 0.1
is used. The reason behind this choice is obvious: there are already too many
parameters for the optim function and adding other optional parameters would lead
to an unusable function.

Moreover, users and developers may want to add new features to the optim
primitive, but that may lead to several difficulties.

e Extending the current optim gateway is very difficult, because of the compli-
cated management of the 20 input optional arguments. Moreover, maintaining
and developing the interface during the life of the Scilab project is difficult,
because the order of the arguments matters. For example, we may realize that
one argument may be unnecessary (because, for example, the same informa-
tion may be computed from another variable). In this case, we cannot remove
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the argument from the calling sequence, because it would break the backward
compatibility of all the scripts which are using the function.

e Extending the list of output arguments is difficult. For example, we may be
interested by an integer representing the status of the optimization (e.g. con-
vergence reached, maximum number of iterations reached, maximum number
of function calls, etc...). We might also be interested in the number of itera-
tions, the number of function calls, the final value of the approximation of the
Hessian matrix, the final value of the gradient, and many other informations.
The limited number of output arguments actually limits the number of infor-
mations that the user can extract out of a simulation. Moreover, if we want
to get the output argument #6, for example, we must call the function with
all the arguments from #1 to #6. This might generate a lot of unnecessary
data.

e We might want to set the optional input argument #7, but not the optional
argument #6, which is not possible with the current interface. This is because
the argument processing system is based on the order of the arguments.

All in all, the fact that the input and the output arguments are used explicitly, and
based on their order, is very inconvenient when the number of arguments is large.

If an Oriented Object Programming environment was available for Scilab, the
management of the arguments would be solved with less difficulty.

3.7.2 A ”person” class in Scilab

In this section, we give a concrete example of the method, based of the development
of a "person” class.

The method that we present in this document to emulate Object Oriented Pro-
gramming is classical in other languages. Indeed, it is common to extend a non-
object language into an OOP framework. A possible method is:

e we create an abstract data type (ADT) with the language basic data structures,

e we emulate methods with functions, where the first argument, named this,
represents the current object.

We will use this method and emulate a sample "person” class as an example.
The ”"person” class is made of the following functions.

e The person new function, the ”constructor”, creates a new person.
e The person_free function, the "destructor”, destroys an existing person.

e The person configure and person _cget functions, allow to configure and
quiery the fields of an existing person.

e The person_display function, a "method”, displays the current object into
the console.
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In these functions, the current object will be stored in the variable this. To imple-
ment our class, we use a typed list.

The following function person_new, returns a new person this. This new person
is defined by its name, first name, phone number and email. We choose to use the
default empty string value for all the fields.

function this = person_new ()
this = tlist (["TPERSON","name","firstname","phone","email"])
this.name=""
this.firstname=""
this.phone=""

this.email=""
endfunction

The following person_free function destroys an existing person.

function this = person_free (this)
// Nothing to be domne.
endfunction

Since there is nothing to be done for now, the body of the function person free is
empty. Still, for consistency reasons, and because the actual body of the function
may evolve later during the development of the component, we create this function
anyway.

We emphasize that the variable this is both an input and an output argument
of the person free. Indeed, the current person is, in principle, modified by the
action of the person_free function.

The function person_configure allows to configure a field of the current person.
Each field is identified by a string, the "key”, which corresponds to a value. Hence,
this is simply a "key-value” mapping. The function sets the value corresponding
to the given key, and returns the updated object this. For the "person” class, the

keys are "-name", "-firstname", "-phone" and "-email".
function this = person_configure (this,key,value)
select key
case "-name" then
this.name = value
case "-firstname" then
this.firstname = value
case "-phone" then
this.phone = value
case "-email" then
this.email = value
else

errmsg = sprintf ("Unknown key %s",key)
error (errmsg)
end
endfunction

N

We made the choice of prefixing each key by a minus character. In calling
sequences, this allows to easily distinguish a key from a value.

We emphasize that the variable this is both an input and an output argument
of the person_configure function. This is similar to the person_free function that
we have previously created.
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Similarly, the person_cget function allows to get a given field of the current
person. The person_cget returns the value corresponding to the given key of the
current object.

function value = person_cget (this,key)
select key
case "-name" then
value = this.name
case "-firstname" then
value = this.firstname
case "-phone" then
value = this.phone
case "-email" then
value = this.email
else
errmsg = sprintf ("Unknown key %s",key)
error (errmsg)
end
endfunction

More precisely, the person_cget function allows to get the value of a configurable
key. The ”¢” in "cget” refers to the first letter of ”configure”. If, instead, we want
to create a function which returns the value of a non-configurable key, we may name
it person_get.
Now that our class is setup, we can create a new "method”. The following
person_display function displays the current object this in the console.
function person_display (this)
mprintf ("Person\n")
mprintf ("Name: %s\n", this.name)
mprintf ("First name: %s\n", this.firstname)
mprintf ("Phone: %s\n", this.phone)
mprintf ("E-mail: %s\n", this.email)
endfunction
We now present a simple use of the class "person” that we have just developed.
In the following script, we create a new person by calling the person_new function.
Then we call the person_configure function several times in order to configure the
various fields of the person.

pl = person_mnew ();

pl = person_configure(pl,"-name","Backus");

pl = person_configure(pl,"-firstname","John");

pl = person_configure(pl,"-phone","01.23.45.67.89");

pl = person_configure(pl,"-email"," john.backus@company.com");

In the following session, we call the person_display function and prints the current
person.

-->person_display(pl)

Person

Name: Backus

First name: John

Phone: 01.23.45.67.89

E-mail: john.backus@company.com
We can also quiery the name of the current person, by calling the person_get
function.
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-->name = person_cget(pl,"-name"
name =
Backus

Finally, we destroy the current person.

pl = person_free(pl);

3.7.3 Extending the class

In this section, we discuss a way to extend a class based on the emulation method
that we have presented. We aim at being able to manage more complex components,
with more fields, more methods or more classes.

First, we emphasize that the management of the options of the class is secure.
Indeed, the system that we have just designed simply maps a key to a value. Since
the list of keys is defined once for all, the user cannot configure or get the value of
a key which does not exist. If we try to, the person _configure or person cget
functions generate an error.

It is straightforward to add a new key into the class. We first have to update the
person_ new function, adding the new field to the typed list. We can decide which
default value to use for the new field. Notice that existing scripts using the ”person”
class will work without any modification, using the default value of the new field. If
required, a script may be updated in order to configure the new key to a non-default
value.

We may decide to distinguish between public fields, which can be configured by
the user of the class, and private fields, which cannot. In order to add a new private
field into the "person” class, say ”"bankaccount”, we modify the person_new function
and add the corresponding string into the typed list. Since we have not made it
available neither in the person_configure, nor in the person_cget functions, the
user of the class cannot access to it.

We may be a little bit more flexible, allowing the user of the class to get the
value of the field, without the possibility of changing the value. In this case, we
should create a separated person_get function (notice the lack of the ”¢” letter).
This allows to separate configurable options and non-configurable options.

We can create even more complex data structures, by nesting the classes. This is
easy, since a typed list can contain a typed list, which can contain a typed list, etc...
at any level of nesting that is required. Hence, we can emulate a limited inheritance,
an idea which is one of the main topics in OOP.

For example, assume that we want to create a ”company” class. That ”company”
is specified by its name, its address, its purpose and the list of all the ”persons” work-
ing in it. The following company new function suggests a possible implementation.

function this = company_new ()
this = tlist (["TCOMPANY","name","address","purpose",..
"employees"])
this.name=""
this.address=""
this.purpose=""

this.employees = list ()
endfunction
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The following company_addperson function allows to add a new person to the list
of employees.
function this = company_addperson ( this , person )

this.employees($+1) = person
endfunction

In fact, all the methods which are commonly used in OOP can be applied using
this emulation scheme. This allows to create stand-alone components, providing
a clear public interface and avoiding the need for complex functions using a large
number of positional arguments.

3.8 Overloading typed lists

In this section, we will see how to overload the string function so that we can
convert a typed list into a string. We will also review how to overload the disp
function, i.e. the printing system, which allows to customize the printing of typed
lists.
The following %TPERSON_string function returns a matrix of strings containing
a description of the current person. It first creates an empty matrix. Then it adds
the strings one after the other, by using the output of the sprintf function, which
allows to format the strings.
function str = Y%TPERSON_string (this)
str = []
k=1
str(k) = sprintf ("Person:")
k =5k + 1
str(k) = sprintf ("======================")
k =k + 1
str(k) = sprintf ("Name: %s", this.name)
k =5k + 1
str(k) = sprintf("First name: %s", this.firstname)
k =k + 1
str (k) = sprintf ("Phone: ¥%s", this.phone)
k =k + 1
str(k) = sprintf("E-mail: ¥%s", this.email)
endfunction

The %TPERSON_string function allows to overload the string function for any object
with type TPERSON.

The following %TPERSON p function prints the current person. It first calls the
string function in order to compute a matrix of strings describing the person. Then
it makes a loop over the rows of the matrix and display them one after the other.

function %TPERSON_p ( this )
str = string(this)

nbrows = size(str,"r")
for i = 1 : nbrows

mprintf ("%s\n",str(i))
end

endfunction

The %TPERSON_p function allows to overload the printing of the objects with type
TPERSON (the letter "p” stands for ”print”).
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In the following session, we call the string function with the person p1.

-->pl = person_new();

-->pl = person_configure(pl,"-name","Backus");

-->pl = person_configure(pl,"-firstname","John");

-->pl = person_configure(pl,"-phone","01.23.45.67.89");
-->pl = person_configure(pl,"-email",..

-->"john.backus@company.com");
-->string(pl)

ans =

!Person:

1
|
!
!
'Name: Backus !
! !
!
!
!
!
!

'First name: John
|

!Phone: 01.23.45.67.89
!

'!E-mail: john.backus@company.com

As we can see in the previous session, the string function has automatically called
the %TPERSON_string function that we have previously defined.

In the following session, we simply type the name of the variable p1 (and imme-
diately press the enter key in the console), as with any other variable. This displays
the content of our p1 variable.

-->pl

pl =
Person:

Name: Backus

First name: John

Phone: 01.23.45.67.89

E-mail: john.backus@company.com

In the previous session, the printing system has automatically called the %TPERSON p
function that we have previously defined. Notice that the same output would have
been produced if we had used the disp(pl) statement.

Finally, we destroy the current person.

pl = person_free(pl);
There are many other functions which can be defined for typed lists. For example,

we may overload the + operator so that we can add two persons. This is described
in more detail in the help page devoted to overloading:

help overloading

3.9 The mlist data type

In this section, we present the mlist data type, which is a matrix-oriented type of
list. In the first part of this section, we present the main motivation for the mlist
data type, by comparison with the tlist. Then we present a sample example of an
mlist, where we define the extraction function.
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The main difference between a tlist and an mlist is with respect to the ex-
traction and insertion functions. Indeed, for a tlist M, the index-based extraction,
i.e. the statement x=M(2), for example, is defined by default. It can be overloaded
by the user, but this is not mandatory, as we are going to see.

In the following script, we define a t1list with type ”V”. This typed list has two
fields, "name” and ”age”.

M=t1ist(["V","name","age"],["a","b";"c" "d"],[l 2; 3 4]),

As expected from a tlist, the statement M(2) allows to extract the second field,
i.e. the "name”, of the variable.
-->M(2)
ans =

la Db !
! !

lc d !

This is the same for the insertion (i.e. M(2)=x) into a list (or tlist).

On the other hand, for an mlist, the extraction and insertion functions must be
defined. If not, an error is generated. In the following script, we define a mlist with
type 7V”. As previously, this matrix list has two fields, "name” and "age”.

M=mlist(["V","name","age"],["a","b";"c" "d"],[l 2; 3 4])’

In the following session, we see that we cannot directly extract the second field of
this list.

-->M(2)

!--error 144
Undefined operation for the given operands.
check or define function %l_e for overloading.

The error message tells us that we are not able to extract the second entry of the
variable M and that some function, that we are going to see later in this section,
must be defined.

Let us reconsider the previous example and assume that Mis a t1ist. The specific
issue with M is that the second entry M(2) may not correspond to what we need.
Indeed, the variable M(2) is the matrix of strings ["a","b";"c" "d"]. Similarily,
the variable M(1) is the matrix of strings ["V","name","age"]. But there might
be situations where we would like to express that the ”second entry” represents
a particular entry which does not correspond to the particular meaning which is
associated to a tlist. For example, we may want to concatenate the name with
the value to form the string "Name: b, age: 2”7, which would be the second entry of
our matrix M. Hence, it seems that we need to redefine the extraction (or insertion)
of values for a t1ist. But this is not possible, because the overloading system only
allows to define functions which do not exist: in this case, the extraction function
already exists, so that we cannot define it. This is where the mlist is useful: we can
define the extraction and insertion functions for a mlist and customize its behavior.
In fact, we are even forced to do so: as we have seen before, it is mandatory.

In order to define the extraction function for the mlist with type "V”, we
must define the function %V_e, where the ”e” letter stands for ”extraction”. This
is done in the following script. The header of the extraction function must be
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[x1,..,xm]=)<type_of_a> e _(il,...,in,a) where x1,...,xm are the extracted
values, i1, ...,1in are the indices of the values to be extracted and a is the current
variable. Hence, the statement M=varargin($) allows to set into M the current vari-
able to extract the values from. Then, the indices can be retrieved with the syntax
varargin(1:$-1), which creates a list of variables containing the actual indices.
Finally, we create a matrix of strings, by concatenating the name with the string
representing the age.

function r=%V_e(varargin)

M = varargin($)
r= "Name: " + M.name(varargin(1:$-1)) +
", Age: " + string(M.age(varargin(1:$-1)))

endfunction

In the following script, we extract the second entry of M.
-->M(2)

ans =
Name: c, Age: 3

We can also use a syntax which is similar to matrices, as in the following script.

-->M(2:3)

ans =

!Name: c, Age: 3 !
! !
!Name: b, Age: 2 !

-->M(2,:)

ans =

!Name: ¢, Age: 3 Name: d, Age: 4 !
-->M(:,1)

ans =

!Name: a, Age: 1 !
! !

!Name: ¢, Age: 3 !

3.10 The struct data type

In this section, we briefly present the struct, which is a data structure with un-
ordered items of heterogeneous type. We compare its features against the 1list.
Inside a struct, all the items can be extracted by their name. In the following
session, we define the variable d as a struct, with three fields "day”, ”month” and
7 year77 .
-->d=struct("day" ,25,"month" ,"DEC","year" ,2006)
d =

day: 25

month: "DEC"

year: 2006

Notice that the fields of the struct do not have the same types: the first field is a
string, while the second field is a double.

In order to extract a value from a struct, we simply use the name of the variable,
followed by a dot ”.” and the name of the field.
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-->d.month
ans =
DEC

7

In order to insert a value into a struct, we simply use the equal ”=" operator.

-->d.month="AUG’

d =
day: 25
month: "AUG"
year: 2006

A struct can contain another struct, which can lead to nested data structures.
For example, in the following session, we create a week-end from two consecutive
days.

-->dl=struct("day",01,"month" ,"JAN","year" ,2011);
-->d2=struct("day",02,"month" ,"JAN","year" ,2011);
-->weekend = struct("Sat",dl1,"Sun",d2)

weekend =

Sat: [1x1 struct]
Sun: [1x1 struct]
-->weekend. Sat

ans =
day: 01
month: "JAN"
year: 2011

From the flexibility point of view, a t1list is more powerful than a struct. This
is because we can overload the functions so that their behaviour can be customized
for a tlist. Indeed, customizing the behaviour of a struct is not possible. This is
why most users tend to favor the tlist data type.

In fact, the main advantage of the struct is to be compatible with Matlab and
Octave.

3.11 The array of structs

An array of structs is an array where each index is associated to a struct. There
are several ways to create an array of structs. In the first part of this section, we
concatenate several structures to create an array. In the second part, we initialize a
whole array of structures in one call, then fill the fields one after the other.

If several structures have the same fields, and if all these fields have the same
size, then they can be concatenated into one array of structures. In the following
session, we create four separate structs.

sl=struct("firstname","John","birthyear" ,b1940);
s2=struct("firstname","Paul","birthyear" ,b1942);

s3=struct("firstname","George","birthyear" ,1943);
s4=struct("firstname","Ringo","birthyear" ,1940);

Notice that the fields do not have the same type: the first field is a string, while
the second field is a double. Then we concatenate them into one array of structs,
using the [] syntax, which is similar to matrices.

-->s=[s1,s82,s83,s4]
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S =

1x4 struct array with fields:
firstname
name

We can extract the third structure out of the array, by using the s(3) syntax, which
is similar to matrices.

-->s5(3)

ans =
firstname: "George"
name: "Harrisson"

We can access to the "firstname” field of all the structures, as in the following script.
This produces a list of strings.

-->s.firstname

ans =
ans (1)
John
ans (2)
Paul
ans (3)
George
ans (4)
Ringo
-->typeof (s.firstname)
ans =
list

For performance reasons, we do not advise to let structures grow dynamically.
This is because this forces the interpreter to dynamically allocate more and more
memory, and can lead to slow scripts. Instead, whenever possible, we should pre-
define an array of structures, and then fill the existing entries.

In the following script, we define a 4-by-1 array of structs, where each structure
contains an empty firstname and an empty name.

t(l1:4)=struct("firstname" ,[],"birthyear",[])

Then we can fill each structure, as in the following script.

t(1).firstname="John";
t(1).birthyear=1940;
t(2).firstname="Paul";
t(2).birthyear=1942;
t(3).firstname="George";
t(3) .birthyear=1943;
t(4).firstname="Ringo";
t(4).birthyear=1940;

We can check that this produces exactly the same array of structs as before.

-->t
t =
4x1 struct array with fields:
firstname
birthyear
-=>t (1)
ans =
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cell Create a cell array with empty cells.
cell2mat Convert a cell array into a matrix.
iscell Test if variable a is a cell array.
makecell Create a cell array and initiate its cells.

Figure 17: Functions related to cells.

firstname: "John"
birthyear: 1940

In the previous scripts, we have only seen arrays with 1 index. It must be clear
that an array of structs is actually a 2-index array, i.e. a matrix. By the way, we
are going to review another method to initialize an array of structs.

In the following script, we initialize a 2-by-2 structure array.

-->u(2,2).firstname=[]

u =

2x2 struct array with fields:
firstname

-->u(2,2).birthyear=[]

-

2x2 struct array with fields:
firstname
birthyear

Then we can fill the entries with a syntax which is similar to matrices.

u(1,1).firstname="John";
u(l,1).birthyear=1940;
u(2,1).firstname="Paul";
u(2,1).birthyear=1942;
u(1,2).firstname="George";
u(1,2).birthyear=1943;
u(2,2).firstname="Ringo";
u(2,2).birthyear=1940;

Once done, we can extract the structure associated with the indices (2,1), for exam-
ple.
-->u(2,1)
ans =

firstname: "Paul"
birthyear: 1942

3.12 The cell data type

In this section, we briefly present the cell, which is an heterogeneous array of
variables. Then we compare its features with the features against the hypermatrix
and the 1ist. The figure 17 presents several functions related to cells.

The cell function allows to create an array. This cell can contain any other
type of variables, including doubles, integers, strings, etc... In the following session,
we create a 2-by-3 cell.
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-->c = cell(2,3)
C =

{r {r {r

! !

Hr 4y {3 !

The size of a cell can be computed with the size function.

-->size(c)
ans =
2. 3.

In order to insert a value into the cell, we cannot use the same syntax as for
matrices.

-->c(2,1)=12
!--error 10000
Invalid assignement: for insertion in cell,
use e.g. x(i,j).entries=y

at line 3 of function gemneric_i_ce called by
at line 3 of function %s_i_ce called by
c(2,1)=12

Instead, we can use the entries field of the (2,1) entry, as in the following session.
-->c(2,1) .entries=12
C =
{4 {r
! !

112 {3

In the following session, we insert a string into the (1,3) entry.

-->c(1,3).entries="5"

C
|{} {} ngn 1

112 {3 O

In order to delete the (1,3) entry, we can use the empty matrix [].

-->c(1,3).entries=[]

C
{r {r {F

112 {} {}

We can extract a sub-part of the cell, using a syntax similar to matrices. Notice
that the result is a cell.

-->x=c(1:2,1)

X
{r
! !

112 !
-->typeof (x)
ans =

ce

On the other hand, when we extract one particular entry with the entries field, we
get the same data type as this particular entry. In the following session, we extract
the (2,1) entry into x, and check that the variable x is a double.
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-->x = c(2,1).entries
x =
12.
-->typeof (x)
ans =
constant

If we extract several entries at once with the entries field, we get a list. In the
following session, we extract all the entries in the first column.
-->x = c(1:2,1).entries
x =
x (1)
(]
x(2)
12.
-->typeof (x)
ans =
list

We can create multi-indexed arrays by using cells. For example, the statement
c=cell(2,3,4) creates a 2-by-3-by-4 array. This feature can be compared to hy-
permatrices, with the additionnal advantage that the entries of a cell can have
different types, while all the entries of an hypermatrix must have the same type.

The behaviour of a cell can also be compared to a 1ist. But the entries of a
cell can be accessed with a syntax similar to matrices, which can be convenient in
some situations.

One of the features of the cell is that it is partially compatible with Matlab
and Octave. But the cell in Scilab does not completely behave the same way, so
that this compatibility is only partial. For example, the (2,1) entry of a cell can
be extracted with the c{2,1} syntax (notice the braces ”{}”): this syntax is not
available in Scilab.

The syntax to extract values out of a cell might be particularily useful in
some situations. This feature is shared with the tlist and the mlist, where the
extraction can be overloaded.

3.13 Comparison of data types

In this section, we compare the various data types that we have presented. The
figure 18 presents an overview of these data types.

The figure 19 presents the various data types that we have met so far and suggests
other data types for replacement.

Replacing one data type by another might be interesting, for example in situ-
ations where performance matters. In this situation, experimenting various imple-
mentations and measuring the performance of each one may allow to improve the
performance of a given algorithm.

Some data types are heterogeneous, i.e. these data types can contain variables
which can have different types. This is the situation of the struct, the mlist and
the cell. Other data types can only contain one particular type of variables: this
is the situation of the matrix and the hypermatrix. If all the variables that the data
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Data type Purpose Advantage Drawback
matrix 2-indices matrix Efficient, Simple Homogeneous
hypermatrix Multi-index matrix Homogeneous
list Ordered set of items No overloading.
tlist Typed list Can be overloaded.
mlist Matrix-oriented list Extraction/Insertion

can be user-defined.
struct Unordered set of items Compatible

with Matlab. No overloading.
cell Partly compatible

with Matlab. No overloading.

Figure 18: Scilab data structures.

Data Implemen- Hetero- Nesting
Type tation geneous

matrix built-in No No
hypermatrix mlist No No

list built-in Yes Yes
tlist built-in Yes Yes
mlist built-in Yes Yes
struct mlist Yes Yes

cell mlist Yes Yes

Figure 19: Comparison of data types. The ”Implementation” column refers to the
implementation of these data types in Scilab v5.

type must manage have the same type, there is no doubt that the matrix or the
hypermatrix should be chosen.

Nesting can be useful when we want to create trees of data structures. In this
case, neither the matrix, nor the hypermatrix can be used. This is actually one of
the main practical uses of the 1ist. The "Nesting” column of the figure 19 presents
this feature for all the data structures.

One of the reasons which may explain performance differences is the implemen-
tation of the various data types. This is presented in the ”Implementation” column
of the figure 19, where we present the implementation of these data types in Scilab
vh.

For example, we have presented the hypermatrices in the section 3.3. In the
section 3.4, we have already analyzed the performance impact that extraction of
hypermatrices may have. In Scilab v5, hypermatrices are implemented with mlists,
supported by both compiled source code and Scilab macros. For example, the ex-
traction of hypermatrices of doubles is based on a compiled source code, while the
extraction of hypermatrices of strings is based on a macro: this may also lead to
performance differences.
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3.14 Notes and references

In the first part of this section, we present some notes and references about the
emulation of OOP in Scilab. In the second part, we describe the link between the
polynomial data type and the control features in Scilab.

The abstract data structure to emulate OOP depends on the language.

e In C the abstract data structure of choice is the struct. This method of
extending C to provide an OOP framework is often used [47, 45] when using
C++ is not wanted or not possible. This method is already used inside the
source code of Scilab, in the graphics module, for the configuration of graphic
properties. This is known as "handles” : see the ObjectStructure.h header file
[43].

e In Fortran 77, the ”"common” statement is sufficient (but it is rarely used to
emulate OOP).

e In Fortran 90, the ”derived type” was designed for that purpose (but is rarely
used to truly emulate OOP). The Fortran 2003 standard is a real OOP Fortran
based on derived types.

e In Tcl, the "array” data structure is an appropriate ADT (this is used by
the STOOOP package [19] for example). But this may also be done with the
"variable” statement, combined with namespaces (this is done in the SNIT
package [17] for example).

The "new” constructor is emulated by returning an instance of the ADT. The
"new” method may require to allocate memory. The ”free” destructor takes ”this”
as first argument and frees the memory which have have been allocated previously.
This approach is possible in Fortran, C, and other compiled languages, if the first
argument "this” can be modified by the method. In C, this is done by passing a
pointer to the ADT. In Fortran 90, this is done by adding ”intent(inout)” to the
declaration (or nothing at all).

We now discuss the link between the polynomial data type and control. When
the former Matlab open-source project was considered by the researchers at IRIA
(French Institute for Research in Computer Science and Control) in the early 1980s,
they wanted to create a Computer Aided Control System Design (C.A.C.S.D.) soft-
ware. At this time, the main developers were Franois Delebecque and Serge Steer.
In the context of control theory, we analyze the behavior of dynamical systems.
In the case of a single-input-single-output (SISO) control system, we may use the
Laplace transform on the variables, which leads to the transfer function. Hence,
the rational data type has been introduced to support the analysis of the transfer
functions produced for linear systems. There are many other functions related to
CACSD in Scilab, and presenting them is far beyond the scope of this document.

3.15 Exercises

Exercise 3.1 (Searching for files) Scripting languages are often used to automate tasks, such
as finding or renaming files on a hard drive. In this situation, the regexp function can be used to
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locate the files which match a given pattern. For example, we can use it to search for Scilab scripts
in a directory. This is easy, since Scilab scripts have the ”.sci” (for a file defining a function) or
the ”.sce” (for a file executing Scilab statements) extensions.

Design a function searchSciFilesInDir which searches for these files in a given directory.
We suggest to provide the following header.

filematrix = searchSciFilesInDir (directory,funname)

If such a file is found, we add it to the filematrix matrix of strings, which is returned as an
output argument. Moreover, we call the function funname back. This allows for us to process the
file as we need. Hence, we can use this feature to display the file name, move the file into another
directory, delete it, etc...

Design a function mydisplay with the following header:

mydisplay(filename)

and use this function in combination with the searchSciFilesInDir in order to display the files
in a directory.

Exercise 3.2 (Querying typed lists) The functions that we have reviewed allows to program
typed lists in a very dynamic way. We will now see how to use the definedfields functions to
dynamically compute if a field, identified by its string, is defined or not. This will allow to get a
little bit more practice with typed lists. Recall that we can create a typed list without actually
defining the values of the fields. These fields can be defined afterward, so that, at a particular time,
we do not know if all the fields are defined or not. Hence, we may need a function isfielddef
which would behave as in the following session.

-->p = tlist(["person","firstname","name","birthyear"]);
-->isfielddef ( p , "name" )
ans =
F
-->p.name = "Smith";
-->isfielddef ( p , "name" )
ans =
T

Write the implementation of the isfielddef function. To do so, you may combine the find and
definedfields functions.

4 Management of functions

In this section, we review the management of functions and present features to design
flexible functions. We present methods to inquire on functions and to separate the
macros from the primitives. We notice that functions are not reserved in Scilab and
warn about issues of the funcprot function. We present the use of callbacks, which
allow to let the user of a function customize a part of an algorithm. We analyze
methods to design functions with a variable number of input or output arguments,
based on the argn, varargin and varargout statements. We show common ways
to provide default values to input arguments. We present how to use the empty
matrix [] to overcome the problem caused by positional input arguments. We also
consider the definition of functions where the input arguments can have various
types. Then we present features which allow to design robust functions. We present
practical examples based on the error, warning and gettext functions. We present
the parameters module, which allows to solve the problem of designing a function
with a large number of parameters. The scope of variable through the call stack

23



type typeof Description

11 "function” Uncompiled macro
13 “function” Compiled macro
130 7fptr” Primitive

Figure 20: Various types of functions.

is analyzed in depth. The issues caused by poor uses of this feature are analyzed
based on typical use cases. We present issues with callbacks and analyze methods to
solve them. We present a method based on lists to provide additional arguments to
callbacks. Finally, we present meta-programming tools based on the execstr and
deff functions.

4.1 Advanced function management

In this section, we present advanced function management. In the first section, we
present the differences between macros and primitives. Then we emphasize that
functions are not reserved, which implies that it is possible to redefine a function
which already exists. We show that this is caused by the fact that functions are
variables. We present the funcprot function and show how to use callbacks.

4.1.1 How to inquire about functions

In this section, we present the difference between macros and primitive. We analyze
the various values returned by the type and typeof functions for functions input
arguments. We introduce the deff function, which allows to dynamically define a
new function, based on strings. Finally, we present the get_function path function,
which returns the path to the file defining a macro.

There are two main types of functions:

e macros, which are written in the Scilab language,

e primitives, which are written in in a compiled language, like C, C4++ or Fortran
for example.

Most of the time, there is not direct way to distinguish between these two types of
functions, and this is a good feature: when we use a function, we do not care about
the language in which the function is written since only the result matters. This is
why we usually use the name function, without further details. But sometimes, this
is important, for example when we want to analyze or debug a particular function:
in this case, it is necessary to know where the function comes from.

There are several features which allow to inquire about a particular function. In
this section, we focus on the type, typeof, deff and get_function path functions.

The type of a macro is either 11 or 13 and that the type of a primitive is 130.
These types are summarized in the figure 20.

In the following session, we define a function with the function statement. Then
we compute its type with the type and typeof functions.
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-->function y = myfunction ( x )
--=> y = 2 % x
-->endfunction
-->type(myfunction)
ans =
13.
-->typeof (myfunction)
ans =
function

The eye function is a primitive which returns identity matrices. In the following
session, we exercise the type and typeof functions with the eye input argument.

-->type (eye)

ans =

130.

-->typeof (eye)

ans =

fptr

The deff function allows to dynamically define a function based on strings repre-
senting its definition. This allows to dynamically define a new function, for example
in order to encapsulate a function into another. The deff function accepts an op-
tional input argument which allows to change how the function is processed by the
interpreter. Such a function can be compiled, compiled and profiled or not compiled.
The compilation process allows to generate a faster intermediate bytecode, which
can be directly used by the interpreter without additional treatment. But it also
makes the debugging impossible, and this is why this feature can be disabled. We
will review the deff in more detail in the section 4.7 of this document.

By default, the deff function create compiled macros. In the following session,
we define an uncompiled macro with the deff function. The first argument of the
deff function is the header of the function. In our case, the myplus function takes
the two input arguments y and z and returns the output argument x. The second
argument of the deff function is the body of the function. Here, we simply set
x to the sum of y and z. Finally, the third argument of the deff function is a
string defining the type of function which is to be created. We can choose between
"c", for a compiled macro, "p", for a compiled and profiled macro, and "n", for an
uncompiled macro.

-->deff ("x=myplus(y,z)","x=y+z","n")
-->type (myplus)
ans =
11.
-->typeof (myplus)

ans =
function

The previous session allows to check that the type of an uncompiled function is 11.

When a function is provided in a library, the get_function_path function allows
to get the path to the function. For example, the optimization module provided
with Scilab contains both primitives (for example the function optim) and macros
(for example, the function derivative). Optimization macros are collected in the
library optimizationlib, which is analyzed in the following session.
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-->optimizationlib
optimizationlib =

Functions files location : SCI\modules\optimization\macros\.
aplat bvodeS datafit derivative fit_dat
karmarkar leastsq linpro list2vec
Imisolver Imitool mps2linpro NDcost
numdiff pack pencost qpsolve unpack vec2list

The previous session does not tell us if any of the functions listed within the
optimizationlib variable is a macro or a primitive. For that purpose, we can call
the typeof function, as in the following session, which shows that the derivative
function is a macro.

-->typeof (derivative)

ans =
function

In the following session, we compute the path leading to the derivative function by
using the get_function path function. Then we combine the get_function path
and the editor functions to edit this macro.
-->get_function_path("derivative")
ans =
D:/Programs/SCILAB~1.1-B\modules\optimization\
macros\derivative.sci
-->editor(get_function_path("derivative"))

Notice that the get_function_path function does not work when the input ar-
gument is a function provided in a compiled language, e.g. the optim function.

-->typeof (optim)

ans =
fptr
-->get_function_path("optim")
WARNING: ‘"optim" is not a library function
ans =
(1

4.1.2 Functions are not reserved

It is possible to redefine a function which already exists. Often, this is a mistake
which makes Scilab generate an error message. In the following session, we define
the rand function as a regular function and check that we can call it as any other
user-defined function.
-->function y = rand(t)
-—=> y = t + 1
-->endfunction
Warning : redefining function: rand.
Use funcprot (0) to avoid this message
-->y = rand (1)
y =
2

The warning about the fact that we are redefining the function rand should make
us feel uncomfortable with our script. It tells us that the rand function already exists
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in Scilab, which can be easily verified with the help rand statement. Indeed, the
built-in rand function allows to generate random numbers and we certainly do not
want to redefine this function.

In the present case, the error is obvious, but practical situations might be much
more complicated. For example, we can use a complicated nested tree of functions,
where one very low level function raises this warning. Examining the faulty function
and running it interactively allows most of the time to discover the issue. Moreover,
since there are many existing functions in Scilab, it is likely that creating a new
program initially produces name conflicts. In all cases, we should fix this bug without
re-defining any existing function.

We will review this topic more deeply in the next section, where we present
an example where temporarily disabling the function protection is really necessary.
That is, we will present the funcprot function which is mentioned in the warning
message of the previous session.

4.1.3 Functions are variables

In this section, we show that function are variables and introduce the funcprot
function.

A powerful feature of the language is that functions are variables. This implies
that we can store a function into a variable and use that variable as a function. In
compiled languages, this feature is often known as ”function pointers”.

In the following session, we define a function f. Then we set the content of
the variable fp to the function f. Finally, we can use the function fp as a regular
function.

-->function y = £ ( t )
-=> y =t +1
-->endfunction
-->fp = f
fp =
[yl=fp(t)
-->fp (1)
ans =
2.

This feature allows to use a very common programming tool, known as ”call-
backs”. A callback is a function pointer which can be configured by the user of a
component. Once configured, the component can call back the user-defined function,
so that the algorithm can have, at least partly, a customized behavior.

Since functions are variables, we can set a variable containing a function several
times. In fact, in order to protect users against unwanted redefinition of functions,
a warning message can appear, as shown in the following example.

We begin by defining two functions £1 and £2.

function y = f1 ( x )
y = x72

endfunction

function y = £f2 ( x )
y = x74

endfunction
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prot=funcprot() Get the current function protection mode
funcprot(prot) Set the function protection mode

prot==0 no message when a function is redefined
prot== warning when a function is redefined (default)
prot== error when a function is redefined

Figure 21: The funcprot function.

Then, we can set the variable £ two times successively, as in the following session.
-->f = f1
f =
[yl=£f(x)
-->f = f2
Warning : redefining function: f.
Use funcprot (0) to avoid this message
f =
[yl=£f(x)

We have already seen this warning message in the section 4.1.2, in the case where
we tried to redefine a built-in function. But in the present situation, there is no
reason to prevent us from setting the variable f to a new value. Unfortunately, there
is no possibility for Scilab to distinguish between these two situations. Fortunately,
there is a simple way of disabling the warning message temporarily. The funcprot
function, presented in figure 21, allows to configure the protection mode of functions.

In general, it is not recommended to configure the function protection mode
permanently. For example, we should never write the funcprot (0) statement in the
.scilab startup file. This is because this would prevent us from getting warning
messages and, therefore, may let us use bugged scripts without knowing it.

But, in order to avoid the unnecessary message of the previous session, we can
temporarily disable the protection. In the following session, we make a backup of
the function protection mode, set it temporarily to zero and then restore the mode
to the backup value.

-->o0ldfuncprot = funcprot ()
oldfuncprot =
1.
-->funcprot (0)
-=>f = f2
f =
[yl=£f(x)
-->funcprot (oldfuncprot)

4.1.4 Callbacks

In this section, we present a method to manage callbacks, that is, we consider the
case where an input argument of a function is itself a function. As an example, we
consider the computation of numerical derivatives by finite differences.

In the following session, we use the (built-in) derivative function in order to
compute the derivative of the function myf. We first define the myf function which

o8



squares its input argument x. Then we pass the function myf to the derivative
function as a regular input argument in order to compute the numerical derivative
at the point x=2.
-->function y = myf ( x )
-=> y = x72
-->endfunction
-->y = derivative ( myf , 2 )
y =
4.

In order to understand the behavior of callbacks, we can implement our own sim-
plified numerical derivative function as in the following session. Our implementation
of the numerical derivative is based on an order 1 Taylor expansion of the function
in the neighborhood of the point x. It takes as input arguments the function £, the
point x where the numerical derivative is to be computed and the step h which must
be used.

function y = myderivative ( £ , x , h )

y = (f(x+h) - f(x))/h
endfunction

We emphasize that this example is not to be used in practice, since the built-
in derivative function is much more powerful than our simplified myderivative
function.

Notice that, in the body of the myderivative function, the input argument f is
used as a regular function.

In the following session, we use the myf variable as an input argument to the
myderivative function.

-->y = myderivative ( myf , 2 , 1.e-8 )
y =
4

We made the assumption that the function f has the header y=f (x). We may
wonder what happens if this is not true.
In the following script, we define the myf2 function, which takes both x and a as
input arguments.
function y = myf2 ( x , a )
y = a *x x72
endfunction
The following session shows what happens if we try to compute the numerical deriva-
tive of the myf2 function.

-->y = myderivative ( myf2 , 2 , sqrt(leps) )

!--error 4
Variable not defined: a
at line 2 of function myf2 called by
at line 2 of function myderivative called by

y = myderivative ( myf2 , 2 , sqrt(%eps) )

We may still want to compute the numerical derivative of our function, even if
it has two arguments. We will see in the section 4.5.1 how the scope of variables
can be used to let the myf2 function know about the value of the a argument. The
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argn Returns the current number of input and output arguments.
varargin A list storing the input arguments.
varargout A list storing the output arguments.

Figure 22: Functions related to variable number of input and output arguments.

programming method which we will review is not considered as a ”clean” software
practice. This is why we will present in the section 4.6.4 a method to manage
callbacks with extra arguments.

4.2 Designing flexible functions

In this section, we present the design of functions with a variable number of input
and output arguments. This section reviews the argn function and the varargin
and varargout variables. As we are going to see, providing a variable number of
input arguments allows to simplify the use of a function, by providing default values
for the arguments which are not set by the user.

The functions related to this topic are presented in the figure 22.

In the first part, we analyze a simple example which allows to see the argn
function in action. In the second part, we consider the implementation of a function
which computes the numerical derivatives of a given function. Then we describe how
to solve the problem generated with ordered input arguments, by making a particular
use of the empty matrix syntax. In the final section, we present a function which
behavior depends on the type of its input argument.

4.2.1 Overview of argn

In this section, we make an overview of the argn function and the varargin and
varargout variables. We also present a simple function which allows to understand
how these function perform.

We begin by analyzing the principle of the management of a function with a
variable number of input and output arguments. The typical header of such a
function is the following.

function varargout = myargndemo ( varargin )
[lhs,rhs]l=argn ()

The varargout and varargin arguments are 1ists which represent the output and
input arguments. In the body of the function definition, we call the argn function,
which produces the two following outputs:

e lhs, the number of output arguments,
e rhs, the number of input arguments.

Both the varargin and varargout variables are defined when the function is called.
The number of elements in these two lists is the following.
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e On input, the number of elements in varargin is rhs.
e On input, the number of elements in varargout is zero.
e On output, the number of elements in varargout must be 1hs.

The actual number of elements in varargin depends on the arguments provided by
the user. On the contrary, the varargout list is always empty on input and the task
of defining its content is left to the function.

Let us now consider the following myargndemo function, which will make this
topic more practical. The myargndemo function displays the number of output ar-
guments lhs, the number of input arguments rhs and the number of elements in
the varargin list. Then, we set the output arguments in varargout to 1.

function varargout = myargndemo ( varargin )
[lhs,rhs]=argn()
mprintf ("lhs=%d, rhs=Jd, length(varargin)=%d\n",..
lhs ,rhs,length(varargin))
for i = 1 : 1lhs
varargout (i) = 1
end
endfunction

In our function, we simply copy the input arguments into the output arguments.
The following session shows how the function performs when it is called.
-->myargndemo () ;
lhs=1, rhs=0, length(varargin)=0
-->myargndemo (1) ;
lhs=1, rhs=1, length(varargin)=1
-->myargndemo (1,2);
lhs=1, rhs=2, length(varargin)=2
-->myargndemo (1,2,3);
lhs=1, rhs=3, length(varargin)=3
-->y1l = myargndemo (1) ;
lhs=1, rhs=1, length(varargin)=1
-->[y1,y2] = myargndemo (1);
lhs=2, rhs=1, length(varargin)=1
-->[yl1,y2,y3] = myargndemo (1);
lhs=3, rhs=1, length(varargin)=1

The previous session shows that the number of elements in the list varargin is rhs.

We notice that the minimum number of output arguments is 1, so that we always
have 1hs> 1. This is a property of the interpreter of Scilab, which forces a function
to always return at least one output argument.

We emphasize that a function can be defined with both the varargin and
varargout variables, or only with the varargin variable or even only with the
varargout variable. This decision is left to the designer of the function.

The myargndemo function can be called with any number of input arguments. In
practice, not all calling sequences will be authorized, so that we will have to insert
error statements which will limit the use of the function. This topic will be reviewed
in the next section.
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4.2.2 A practical issue

We now turn to a more practical example, which involves the computation of nu-
merical derivatives. This example is quite complex, but represents a situation where
both the number of input and output arguments is variable.

The derivative function in Scilab allows to compute the first (Jacobian) and
second (Hessian) derivatives of a multivariate function. In order to make the discus-
sion of this topic more vivid, we consider the problem of implementing a simplified
version of this function. The implementation of the derivative function is based
on finite differences and uses finite differences formulas of various orders (see [46]
for more details on this subject).

We assume that the function is smooth and that the relative error in the function
evaluation is equal to the machine precision € ~ 107'6. The total error which
is associated with any finite difference formula is the sum of the truncation error
(because of the use of a limited number of terms in the Taylor expansion) and a
rounding error (because of the limited precision of floating point computations in
the function evaluation). Therefore, the optimal step which minimizes the total
error can be explicitly computed depending on the machine precision.

The following function myderivativel computes the first and second derivatives
of an univariate function. Its input arguments are the function to differentiate £,
the point x where the derivative is to be evaluated, the step h and the order order
of the formula. The function provides an order one forward formula and an order
2 centered formula. The output arguments are the value of the first derivative fp
and second derivative fpp. In the comments of the function, we have written the
optimal steps h, as a reminder.

function [fp,fpp]l = myderivativel ( f , x , order , h )

if ( order == 1 ) then
fp = (£(x+h) - £(x))/h // h=Y%eps~(1/2)
fpp = (f(x+2xh) - 2xf(x+h) + f(x) )/h~2 // h=%eps~(1/3)
else
fp = (f(x+h) - f(x-h))/(2%h) // h=Y%eps~(1/3)
fpp = (£(x+h) - 2*f(x) + f£(x-h) )/h"2 // h=Y%eps~(1/4)
end

endfunction

We now analyze how the myderivativel function behaves in practice. We are
going to discover that this function has several drawbacks and lacks of flexibility
and performance.

We consider the computation of the numerical derivative of the cosine function
at the point x = 0. We define the function myfun, which computes the cosine of its
input argument x.

function y = myfun ( x )

y = cos(x)
endfunction

In the following session, we use the myderivativel function in order to compute
the first derivative of the cosine function.

-->format ("e",25)
-->x0 = %pi/6;
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-->fp = myderivativel ( myfun , x0 , 1 , %eps~(1/2) )
fp =
- 5.000000074505805969D-01
-->fp = myderivativel ( myfun , x0 , 2 , %eps~(1/3) )
fp =
- 5.000000000026094682D-01
The exact value of the first derivative is — sin(7w/6) = —1/2. We see that the centered
formula, associated with order=2, is, as expected, more accurate than the order=1
formula.
In the following session, we call the myderivativel function and compute both
the first and the second derivatives of the cosine function.

-->format ("e" ,25)

-->x0 = %pi/6;
-->[fp,fpp]l = myderivativel ( myfun , x0 , 1 , %eps~(1/2) )
fpp =
- 1.000000000000000000D+00
fp =

- 5.000000074505805969D-01
-->[fp,fpp] = myderivativel ( myfun , x0 , 2 , %eps~(1/3) )

fpp =
- 8.660299016907109237D-01

f =
? 5.000000000026094682D-01
The exact value of the second derivative fpp is — cos(n/6) = —v/3/2 ~ —8.6602 -
107!, Again, we see that the second order formula is more accurate than the first
order formula.

We have checked that our implementation is correct. We are now going to
analyze the design of the function and introduce the need for the variable number
of arguments.

The myderivativel function has three drawbacks.

e [t may make unnecessary computations, which is a performance issue.
e It may produce unaccurate results, which is an accuracy issue.

e [t does not allow to use default values for order and h, which is a flexibility
issue.

The performance issue is caused by the fact that the two output arguments fp
and fpp are computed, even if the user of the function does not actually required
the second, optional, output argument fpp. We notice that the computation of fpp
requires some additional function evaluations with respect to the computation of fp.
This implies that, if the output argument fp only is required, the output argument
fpp will still be computed, which is useless. More precisely, if the calling sequence:

fp = myderivativel ( f , x , order , h )
is used, even if fpp does not appear as an output argument, internally, the fpp
variable will still be computed.

The accuracy issue is cause by the fact that the optimal step can be used either
for the first derivative computation, or for the second derivative computation, but
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not both. Indeed, the optimal step is different for the first derivative and for the
second derivative. More precisely, if the calling sequence:

[fp,fpp]l = myderivativel ( myfun , x0 , 1 , %eps~(1/2) )

is used, then the step %eps~ (1/2) is optimal for the first derivative fp. But, if the
calling sequence:

[fp,fpp]l = myderivativel ( myfun , x0 , 1 , %eps~(1/3) )

is used, then the step %eps~(1/3) is optimal for the second derivative fpp. In all
cases, we must choose and cannot have a good accuracy for both the first and the
second derivative.

The flexibility issue is caused by the fact that the user must specify both the
order and the h input arguments. The problem is that the user may not know what
value to use for these parameters. This is particularly obvious for the h parameter,
which is associated with floating point issues which might be completely unknown
to the user. Hence, it would be convenient if we could use default values of these
input arguments. For example, we may want to use the default order=2, since it
provides a more accurate derivative with the same number of function calls. Given
the order, the optimal step h could be computed with either of the optimal formulas.

Now that we know what problems are associated with our myderivativel func-
tion, we are going to analyze an implementation based on a variable number of input
and output arguments.

4.2.3 Using variable arguments in practice

The goal of this section is to provide an implementation of the function which allows
to use the following calling sequences.

fp = myderivative2 ( myfun , x0 )

fp = myderivative2 ( myfun , x0 , order )
fp = myderivative2 ( myfun , x0 , order , h )
[fp,fpp]l = myderivative2 ( ... )

The main advantage of this implementation are
e to be able to provide default values for order and h,
e to compute fpp only if required by the user,

e to use the optimal step h for both the first and second derivatives, if it is not
provided by the user.

The following function myderivative2 implements a finite difference algorithm,
with optional order order and step h.

1 function varargout = myderivative2 ( varargin )

2 [lhs,rhs]=argn()

3 if ( rhs < 2 | rhs > 4 ) then

4 error ( msprintf (..

5 "%s: Expected from %d to %d input arguments, "+..
6 "but %d are provided",..

7 "myderivative2" ,2,4,rhs))

8 end
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As the body of this function is quite complicated, we are now going to analyze

if ( 1lhs > 2 ) then
error ( msprintf (..

"%s: Expected from %d to %d output arguments,

"but %d are provided",..
"myderivative2" ,0,2,1lhs))
end
f = varargin (1)
X = varargin(2)
if ( rhs >= 3 ) then
order = varargin (3)
else
order = 2
end
if ( rhs >= 4 ) then
h = varargin (4)
hflag = %t
else
hflag = %f
end
if ( order == 1 ) then
if ( "hflag ) then
h = %eps~(1/2)
end
fp = (£(x+h) - £(x))/h
else
if ( “hflag ) then
h = %eps~(1/3)
end
fp = (£(x+h) - f£(x-h))/(2*h)
end
varargout (1) = fp
if ( 1lhs >= 2 ) then
if ( order == 1 ) then
if ( ~“hflag ) then

h = %eps~(1/3)
end
fpp = (£f(x+2%h) - 2*f(x+h) + f(x) )/(h"2)
else

if ( ~“hflag ) then

h = %eps~(1/4)
end
fpp = (£(x+h) - 2xf(x) + f(x-h) )/(h"2)
end
varargout (2) = fpp
end

endfunction

its most important parts.

The line #1 defines the function as taking the varargin variable as input argu-

ment and the varargout variable as output argument.

The line #2 makes use of the argn function, which returns the actual num-
ber of input and output arguments. For example, when the calling sequence fp =
myderivative2 ( myfun , x0 ) is used, we have rhs=2 and 1hs=1. The following

script presents various possible calling sequences.
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myderivative2 ( myfun , x0 ) // 1lhs=1, rhs=2

fp = myderivative2 ( myfun , x0 ) // lhs=1, rhs=2
fp = myderivative2 ( myfun , x0 , order ) // lhs=1, rhs=3
fp = myderivative2 ( myfun , x0 , order , h ) // lhs=1, rhs=4
[fp,fpp]l = myderivativel ( myfun , xO0 ) // lhs=2, rhs=2

The lines #2 to #12 are designed to check that the number of input and output
arguments is correct. For example, the following session shows the error which
is generated in the case where the user wrongly calls the function with 1 input
argument.

-->fp = myderivative2 ( myfun )
!--error 10000
myderivative2: Expected from 2 to 4 input arguments,
but 1 are provided

at line 6 of function myderivative2 called by
fp = myderivative2 ( myfun )

The lines #13 and #14 shows how to directly set the values of the input argu-
ments f and x, which always are forced to be present in the calling sequence. The
lines #15 to #19 allows to set the value of the order parameter. When the number
of input arguments rhs is greater than 3, then we deduce that the value of the order
variable is given by the user, and we use directly that value. In the opposite case,
we set the default value of this parameter, that is we set order=2.

The same processing is done in the lines #20 to #25 in order to set the value of
h. Moreover, we set the value of the hflag boolean variable. This variable is set to
%t if the user has provided h, and to %f if not.

The lines #26 to #36 allow to compute the first derivative, while the second
derivatives are computed in the lines #38 to #51. In each case, if the user has not
provided h, that is, if hflag is false, then the optimal step is used.

The number of output arguments is necessary greater or equal to one. Hence,
there is no need to test the value of 1hs before setting varargout (1) at the line
#37.

One important point is that the second derivative fpp is computed only if it
required by the user. This is ensured by the line #38, which checks for the number
of output arguments: the second derivative is computed only of the second output
argument fpp was actually written in the calling sequence.

The following session shows a simple use of the myderivative2 function, where
we use the default value of both order and h.

-->format ("e" ,25)

-->x0 = %pi/6;
-->fp = myderivative2 ( myfun , x0 )
fp =

- 5.000000000026094682D-01

We notice that, in this case, the second derivative has not been computed, which
may save a significant amount of time.

In the following session, we set the value of order and use the default value for
h.

-->fp = myderivative2 ( myfun , x0 , 1 )
fp =
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- 5.000000074505805969D-01

We can also call this function with two output arguments, as in the following
session.

-->[fp,fpp]l = myderivative2 ( myfun , x0O , order )

fpp =
- 8.660254031419754028D-01

f =
? 5.000000000026094682D-01

We notice that, in this case, the optimal step h has been used for both the first and
the second derivatives.

We have seen in this section how to manage a variable number of input and
output arguments. This method allows to design flexible and efficient functions.

But, in some situations, this is not sufficient and still suffers from limitations.
For example, the method that we have presented is limited by the order of the
arguments, that is, their position in the calling sequence. Indeed, the function
myderivative2 cannot be called by using the default value for the order argument
and setting a customized value for the h argument. This limitation is caused by the
order of the arguments: the h input argument comes after the order argument. In
practice, it would be convenient to be able to use the default value of an argument
#i, and, still, set the value of the argument #i+1 (or any other argument on the
right of the calling sequence). The next section allows to solve this issue.

4.2.4 Default values of optional arguments

In this section, we describe how to manage optional arguments with default values.
We show how to solve the problem generated with ordered input arguments, by
making a particular use of the empty matrix [] syntax.

Indeed, we saw in the previous paragraph that a basic management of optional
arguments forbid us to set an input argument #i+ 1 and use the default value of the
input argument #:. In this section, we present a method where the empty matrix
is used to represent a default parameter.

Let us consider the function myfun, which takes x, p and q as input arguments
and returns the output argument y.

function y = myfun ( x , p , q )
y = q*x’p
endfunction

If we both set x, p and q as input arguments, the function performs perfectly, as

in the following session.
-->myfun(3,2,1)

ans =
9.

For now, our function myfun is not very flexible, so that if we pass only one or
two arguments, the function generates an error.

-->myfun (3)
l--error 4
Undefined variable: q
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at line 2 of function myfun called by
myfun (3)
-->myfun(3,2)

!--error 4
Undefined variable: g
at line 2 of function myfun called by
myfun (3,2)

It would be convenient if, for example, the parameter p had the default value 2
and the parameter q had the default value 1. In that case, if neither p nor q are
provided, the statement foo(3) would return 9.

We can use the varargin variable in order to have a variable number of input
arguments. But, used directly, this does not allow to set the third argument and use
the default value of the second argument. This issue is caused by the ordering of the
input arguments. In order to solve this problem, we are going to make a particular
use of the empty matrix [].

The advantage of the method is to be able to use the default value of the argument
p, while setting the value of the argument q. In order to inform the function that a
particular argument must be set to its default value, we set it to the empty matrix.
This situation is presented in the following session, where we set the argument p to
the empty matrix.

-->myfun2(2,[]1,3) // same as myfun2(2,2,3)

ans =
12.

In order to define the function, we use the following method. If the input argu-
ment is not provided, or if it is provided, but is equal to the empty matrix, then we
use the default value. If the argument is provided and is different from the empty
matrix, then we use it directly. This method is presented in the myfun2 function.

function y = myfun2 ( varargin )
[lhs,rhs]=argn()
if ( rhs<1 | rhs>3 ) then
msg=gettext ("%s: Wrong number of input arguments: "+..
"%d to %d expected.\n")
error (msprintf (msg,"myfun2",1,3))
end
x = varargin (1)
pdefault = 2
if ( rhs >= 2 ) then
if ( varargin(2) <> [] ) then

p = varargin(2)
else
p = pdefault
end
else
p = pdefault
end

qdefault = 1
if ( rhs >= 3 ) then
if ( varargin(3) <> [] ) then
q = varargin (3)
else
q = qdefault
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end
else

q = gqdefault
end

y = q * x°p
endfunction
From the algorithm point of view, we could have chosen another reference value,
different from the empty matrix. For example, we could have considered the empty
string, or any other particular value. The reason why the empty matrix is preferred
in practice is because the comparison against the empty matrix is faster than the
comparison with any other particular value. The actual content of the matrix does
not even matter, since only the size of the matrices are compared. Hence the per-
formance overhead caused by the management of the default values is as low as
possible.
Of course, we can still use the optional arguments as usual, which is presented
in the following session.
-->myfun2 (2)
ans =
4.
-->myfun2(2,3)
ans =
8.
-->myfun2(2,3,2)
ans =
16.

In practice, this method is both flexible and consistent with the basic manage-
ment of input arguments, which remains mainly based on their order.

This method is still limited if the number of input arguments is large. In this
case, there are other solutions which allow to avoid to use ordered arguments. In
the section 4.4, we analyze the parameters module, which allows to configure an
unordered set of input arguments separately from the actual use of the parameters.
Another solution is to emulate Object Oriented Programming, as presented in the
section 3.7.

4.2.5 Functions with variable type input arguments

In this section, we present a function which behavior depends on the type of its
input argument.

The following myprint function provides a particular display for a matrix of
doubles, and another display for a boolean matrix. The body of the function is based
on a if statement, which switches to different parts of the source code depending
on the type of the X variable.

function myprint ( X )
if ( type(X) == 1 ) then
disp("Double matrix")
elseif ( type(X) == 4 ) then
disp("Boolean matrix")
else
error ( "Unexpected type." )
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end
endfunction

In the following session, we call the myprint function with two different types of
matrices.
->myprint ( [1 2] )
Double matrix

-->myprint ( [%T %T]1 )
Boolean matrix

We can make the previous function more useful, by defining separated formatting
rules for each type of data. In the following function, we group of three values is
separated by a large blank space, which visually creates groups of values.

function myprint ( X )

if ( type(X) == 1 ) then
// Real matrix
for i =1 : size(X,"r"
for j =1 : size(X,"c"
mprintf ("%-5d4 ",X(i,j))
if ( j == 3 ) then
mprintf (" ")
end
end
mprintf ("\n")
end
elseif ( type(X) == 4 ) then
// Boolean matrix
for i =1 : size(X,"r"

for j = 1 : size(X,"c")
mprintf ("%s ",string(X(i,j)))
if ( j == 3 ) then
mprintf (" ")
end
end
mprintf ("\n")
end
else
error ( "Unexpected type for input argument var." )
end
endfunction

The following session gives a sample use of the previous function. First, we
display a matrix of doubles.

-->X = [

-->1 2 3 45 6

-->7 8 9 10 11 12
-->13 14 15 16 17 18

-=>1;

-->myprint ( X )

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18

Then we display a boolean matrix.

70



error Sends an error message and stops the computation.
warning Sends a warning message.
gettext Get text translated into the current locale language.

Figure 23: Functions related to error messages.

-->X = [

-=>4%T WT %F %F WF %4F
==>%T WF 4F %T KT 4T
-=>%F WT %F %F AT %F
-=>1;

->myprint ( X )

T TF FFF
TFF TTT
FTF FTF

Many built-in function are designed on this principle. For example, the roots
function returns the roots of a polynomial. Its input argument can be either a
polynomial or a matrix of doubles representing its coefficients. In practice, being able
to manage different types of variables in the same function provides an additional
level of flexibility which is much harder to get in a compiled language such as C or
Fortran.

4.3 Robust functions

In this section, we present some rules which can be applied to all functions which
are designed to be robust against wrong uses. In the next section, we present the
warning and error functions which are the basis of the design of robust functions.
Then we present a general framework for the checks used inside robust functions.
We finally present a function which computes the Pascal matrix and show how to
apply these rules in practice.

4.3.1 The warning and error functions

It often happens that the input arguments of a function can have only a limited
number of possible values. For example, we might require that a given input double
is positive, or that a given input floating point integer can have only three possible
values. In this case, we can use the error or warning functions, which are presented
in the figure 23. The gettext function is related to localization and is described
later in this section.

We now give an example which shows how these functions can be used to protect
the user of a function against wrong uses. In the following script, we define the
mynorm function, which is a simplified version of the built-in norm function. Our
mynorm function allows to compute the 1, 2 or infinity norm of a vector. In other
cases, our function is undefined and this is why we generate an error.

function y = mynorm ( A , n )

if ( n == 1 ) then
y = sum(abs(A))
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elseif ( n == 2 ) then
y=sum(A."~2)"(1/2);

elseif ( n == "inf" ) then
y = max (abs(A))

else
msg = msprintf("%s: Invalid value %d for n.","mynorm",n)
error ( msg )

end

endfunction

In the following session, we test the output of the function mynorm when the
input argument n is equal to 1, 2, 7inf” and the unexpected value 12.

-->mynorm ([1 2 3 4],1)

ans =
10.
-->mynorm ([1 2 3 4],2)
ans =
5.4772256
-->mynorm ([1 2 3 4],"inf")
ans =
4

-->mynorm ([1 2 3 4],12)
!--error 10000
mynorm: Invalid value 12 for n.
at line 10 of function mynorm called by
mynorm ([1 2 3 4],12)

The input argument of the error function is a string. We could have used a
more simple message, such as "Invalid value n.", for example. Our message is a
little bit more complicated for the following reason. The goal is to give to the user a
useful feedback when the error is generated at the bottom of a possibly deep chain
of calls. In order to do so, we give as much information as possible about the origin
of the error.

First, it is convenient for the user to be informed about what exactly is the value
which is rejected by the algorithm. Therefore, we include the actual value of the
input argument n into the message. Furthermore, we make so that the first string
of the error message is the name of the function. This allows to get immediately the
name of the function which is generating the error. The msprintf function is used
in that case to format the string and to produce the msg variable which is passed to
the error function.

We can make so that the error message can be translated into other languages if
necessary. Indeed, Scilab is localized so that most messages appear in the language
of the user. Hence, we get English messages in the United States and Great Britain,
French messages in France, etc... In order to do so, we can use the gettext function
which returns a translated string, based on a localization data base. This is done
for example in the following script.

localstr = gettext ( "%s: Invalid value %d for n." )

msg = msprintf ( localstr , "mynorm" , n )
error ( msg )

Notice that the string which is passed to the gettext function is not the output
but the input of the msprintf function. This is because the localization system
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provides a map from the string "%s: Invalid value %d for n." into localized
strings such as the French message "%s: Valeur ’%d invalide pour n.", for ex-
ample. These localized messages are stored in ”.pot” data files. A lot more infor-
mation about localization is provided at [28].

There are cases when we do want to generate a message, but we do not want
to interrupt the computation. For example, we may want to inform our user that
the mynorm function is rather poor compared to the built-in norm function. In this
case, we do not want to interrupt the algorithm, since the computation is correct.
We can use the warning function, as in the following script.

function y = mynorm2 ( A , n )
msg = msprintf ("%s: Please use norm instead.","mynorm2")
warning (msg)
if ( n == 1 ) then
y = sum(abs(A))
elseif ( n == 2 ) then
y=sum(A."2)"(1/2)
elseif ( n == "inf" ) then
y = max (abs (A))
else
msg = msprintf ("%s: Invalid value %d for n.
error ( msg )
end
endfunction

","mynorm2" ,n)

The following session shows the result of the function.

-->mynorm2 ([1 2 3 4],2)
Warning : mynorm2: Please use norm instead.
ans =
5.4772256

4.3.2 A framework for checks of input arguments

A robust function should protect the user against wrong uses of the function. For
example, if the function takes a matrix of doubles as an input argument, we may get
error messages which are far from being clear. We may even get no error message
at all, for example if the function silently fails. In this section, we present a general
framework for the checkings in a robust function.
The following pascalup_notrobust is function which returns the upper trian-
gular Pascal matrix P, depending on the size n of the matrix.
function P = pascalup_notrobust ( n )
P = eye(n,n)
P(1,:) = ones(1,n)
for i = 2:(n-1)
P(2:i,i+1) = P(1:(i-1),1i)+P(2:1i,1i)
end
endfunction

In the following session, we compute the 5 x 5 upper triangular Pascal matrix.

-->pascalup_notrobust ( 5 )
ans =
1. 1. 1. 1. 1.
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0. 1. 2 3. 4
0. 0. 1 3. 6
0. 0. 0. 1. 4
0. 0. 0. 0. 1

The pascalup notrobust function does not make any checks on the input argument
n. In the case where the input argument is negative or is not a floating point integer,
the function does not generate any error.
-->pascalup_notrobust (-1)
ans =
(]
-->pascalup_notrobust (1.5)

ans =
1.

This last behavior should not be considered as "normal”, as it silently fails. There-
fore, the user may provide wrong input arguments to the function, without even
noticing that something wrong happened.

This is why we often check the input arguments of functions so that the error
message generated to the user is as clear as possible. In general, we should consider
the following checks:

e number of input/output arguments,
e type of input arguments,

e size of input arguments,

e content of input arguments,

which may be shortened as "number/type/size/content”. These rules should be
included as a part of our standard way of writing public functions.

4.3.3 An example of robust function

In this section, we present an example of a robust function which computes the
Pascal matrix. We present examples where the checkings that we use are useful to
detect wrong uses of the function.

The following pascalup is an improved version, with all necessary checks.

function P = pascalup ( n )
/7
// Check number of arguments
[lhs, rhs] = argn()
if ( rhs <> 1 ) then
lstr=gettext ("%s: Wrong number of input arguments: "+..
"%d to %d expected, but %d provided.")
error ( msprintf (lstr,"pascalup",1,1,rhs))
end
//
// Check type of arguments
if ( typeof(n) <> "comnstant" ) then
lstr=gettext("%s: Wrong type for input argument #%d: "+..
"%s expected, but %s provided.")
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error ( msprintf (lstr,"pascalup",l,"constant",typeof(n)))
end
//
// Check size of arguments
if ( size(n,"*") <> 1 ) then
lstr=gettext ("%s: Wrong size for input argument #%d: "+..
"%d entries expected, but %d provided.")
error ( msprintf (lstr,"pascalup",1,1,size(n,"*")))
end
/7
// Check content of arguments
if ( imag(n)<>0 ) then
lstr = gettext("%s: Wrong content for input argument #%d: "+..
"complex numbers are forbidden.")
error ( msprintf (lstr,"pascalup",1))
end
if ( n < 0 ) then
lstr=gettext ("%s: Wrong content for input argument #)d: "+..
"positive entries only are expected.")
error ( msprintf (lstr,"pascalup",1))
end
if ( floor(m)<>n ) then
lstr=gettext ("%s: Wrong content of input argument #%d: "+..
"argument is expected to be a flint.")
error ( msprintf (lstr,"specfun_pascal",1))
end
//
P = eye(n,n)
P(1,:) = omnes(1l,n)
for i = 2:(n-1)
P(2:1,i+1) = P(1:(i-1),i)+P(2:1i,1)
end
endfunction

In the following session, we run the pascalup function and produce various error
messages.

-->pascalup ( )
!--error 10000
pascalup: Wrong number of input arguments:
1 to 1 expected, but O provided.
at line 8 of function pascalup called by
pascalup ( )
-->pascalup ( -1 )
!--error 10000
pascalup: Wrong content for input argument #1:
positive entries only are expected.
at line 33 of function pascalup called by
pascalup ( -1 )
-->pascalup ( 1.5 )
!--error 10000
specfun_pascal: Wrong content of input argument #1:
argument is expected to be a flint.
at line 37 of function pascalup called by
pascalup ( 1.5 )

The rules that we have presented are used in most macros of Scilab. Numerous
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add_param Add a parameter to a list of parameters

get_param Get the value of a parameter in a parameter list

init_param Initialize the structure which will handles the parameters list
is_param Check if a parameter is present in a parameter list

list _param List all the parameters name in a list of parameters

remove param Remove a parameter and its value from a list of parameters
set_param Set the value of a parameter in a parameter list

Figure 24: Functions from the parameters module.

experiments have proved that this method provides an improved robustness, so that
users are less likely to use the functions with wrong input arguments.

4.4 Using parameters

The goal of the parameters module is to be able to design a function which has
a possibly large amount of optional parameters. Using this module allows to avoid
to design a function with a large number of input arguments, which may lead to
confusion. This module has been introduced in Scilab v5.0, after the work by Yann
Collette to integrate optimization algorithms such as Genetic Algorithms and Sim-
ulated Annealing. The functions of the parameters module are presented in the
figure 24.

In the first section, we make an overview of the module and describe its direct
use. In the second section, we present a practical example, based on a sorting
algorithm. The last section focuses on the safe use of the module, protecting the
user against common mistakes.

4.4.1 Overview of the module

In this section, we present the parameters module and give an example of its use, in
the context of a merge-sort algorithm. More precisely, we present the init_param,
add_param and get_param functions.

The module is based on a mapping from keys to values.

e Each key corresponds to a field of the list of parameters and is stored as a
string. The list of available keys is defined by the developer of the function.
There is no limit in the number of keys.

e The type of each value depends on the particular requirements of the algo-
rithm. Virtually any type of value can be stored in the data structure, includ-
ing (but not limited to) matrices of doubles, strings, polynomials, etc...

Hence, this data structure is extremely flexible, as we are going to see.
In order to understand the parameters module, we can separate the situation
between two points of views:

e the user’s point of view,
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e the developer’s point of view.

Therefore, in the following discussion, we will present first what happens when we
want to use the parameters module in order to call a function. Then, we will discuss
what the developer has to do in order to manage the optional parameters.

In order to make the discussion as applied as possible, we will take the example
of a sorting algorithm and will examine it throughout this section. We consider
a mergesort function, which defines a sorting algorithm based on a combination
of recursive sorting and merging. The mergesort function is associated with the
following calling sequences, where x is a matrix of doubles to be sorted, params is a
list of parameters and y is a matrix of sorted doubles.

y = mergesort ( x )
y = mergesort ( x , params )

The actual implementation of the mergesort function will be defined later in this
section. The params variable is a list of parameters which defines two parameters:

e direction, a boolean which is true for increasing order and false for decreasing
order (default direction = %t),

e compfun, a function which defines a comparison function (default compfun =
compfun default).

The compfun_default function is the default comparison function and will be pre-
sented later in this section.

We first consider the user’s point of view and present a simple use of the functions
from the parameters module. We want to sort a matrix of doubles into increasing
order. In the following script, we call the init_param function, which creates the
empty list of parameters params. Then, we add the key "direction" to the list of
parameters. Finally, we call the mergesort function with the variable params as
the second input argument.

params = init_param();

params = add_param(params,"direction",%f);
x = [45 16 2 3]°;

y = mergesort ( x , params );

We now consider the developer’s point of view and analyze the statements which
may be used in the body of the mergesort function. In the following session,
we call the get_param function in order to get the value corresponding to the key
"direction". We pass the %t value to the get_param function, which is the default
value to be used in the case where this key is not defined.

-->direction = get_param(params,"direction",’t)

direction =
F

Since the "direction" key is defined and is false, we simply get back our value. We
may use an extended calling sequence of the get_param function, with the output
argument err. The err variable is true if an error has occurred during the processing
of the argument.
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-->[direction,err] = get_param(params,"direction",%t)
err =

F

direction =

F

In our case, no error is produced and this is why the variable err is false.

We can analyze other combinations of events. For example, let us consider the
situation where the user defines only an empty list of parameters, as in the following
script.

params = init_param();

In this case, in the body of the mergesort function, a straightforward call to the
get_param function generates a warning.
-->direction = get_param(params,"direction",’t)
WARNING: get_param: parameter direction not defined

direction =
T

The warning indicates that the "direction" key is not defined, so that the default
value %t is returned. If we use the additional output argument err, there is no
warning anymore, but the err variable becomes true.
-->[direction,err] = get_param(params,"direction",’t)
err =
T

direction =
T

As a last example, let us consider the case where the user defines the params
variable as an empty matrix.

params = [];

As we are going to see later in this section, this case may happen when we want to
use the default values. The following session shows that an error is generated when
we call the get_param function.
-->direction = get_param(params,"direction",’t)
!--error 10000
get_param: Wrong type for input argument #1: plist expected.

at line 40 of function get_param called by
direction = get_param(params,"direction",’t)

Indeed, the variable params is expected to have the plist data type. This is be-
cause the init_param function creates variables with type plist, which stands for
"parameters list”. In fact, the actual implementation of the init_param function
creates a typed list with type plist. In order to avoid to generate the previous
error, we can use the err output argument, as in the following session.

-->[direction,err] = get_param(params,"direction",%t)

err =
T

direction =
T
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We see that the err variable is true, indicating that an error has been detected
during the processing of the variable params. As before, in this case, the get_param
function returns the default value.

4.4.2 A practical case

In this section, we consider the actual implementation of the mergesort function
presented in the previous section. The sorting algorithm that we are going to present
is based on an algorithm designed in Scilab by Bruno Pingon [44]. The modifications
included in the implementation presented in this section include the management of
the "direction" and "compfun" optional arguments. Interested readers will find
many details about sorting algorithms in [27].

The following mergesort function provides a sorting algorithm, based on a
merge-sort method. Its first argument, x, is the matrix of doubles to be sorted.
The second argument, params, is optional and represents the list of parameters. We
make a first call to the get_param function in order to get the value of the direction
parameter, with %t as the default value. Then we get the value of the compfun pa-
rameter, with compfun default as the default value. The compfun default func-
tion is defined later in this section. Finally, we call the mergesortre function, which
actually implements the recursive merge-sort algorithm.

function y = mergesort ( varargin )
[lhs,rhs]=argn ()
if ( and( rhs<>[1 2] ) ) then
errmsg = sprintf (..
"%s: Unexpected number of arguments : " + ..
"%d provided while %d to %d are expected.",..
"mergesort",rhs,1,2);
error (errmsg)
end
x = varargin (1)
if ( rhs<2 ) then
params = []
else
params = varargin(2)
end
[direction,err] = get_param(params,"direction",%t)
[compfun,err] = get_param(params,"compfun",compfun_default)

y = mergesortre ( x , direction , compfun )
endfunction

The following mergesortre function implements the recursive merge-sort algo-
rithm. The algorithm divides the matrix x into two sub-parts x(1:m) and x(m+1:n),
where m is an integer in the middle of 1 and n. Once sorted by a recursive call, we
merge the two ordered sub-parts back into x.

function x = mergesortre ( x , direction , compfun )
n = length(x)
indices =1 : n

if ( n > 1 ) then
m = floor(n/2)
p = n-m
x1 = mergesortre ( x(1:m) , direction , compfun )
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x2 = mergesortre ( x(m+1:n) , direction , compfun )
x = merge ( x1 , x2 , direction , compfun )
end
endfunction

We notice that the mergesort function does not call itself recursively: the
mergesort function calls mergesortre, which performs the algorithm recursively.
The important fact is that the mergesortre function has fixed input arguments.
This allows to reduce the overhead caused by the processing of the optional argu-
ments.

The following merge function merges its two sorted input arguments x1 and
x2 into its sorted output argument x. The comparison operation is performed by
the compfun function, which returns -1, 0 or 1, depending on the order of its two
input arguments. In the case where the direction argument is false, we invert the
sign of the order variable, so that the order is "decreasing” instead of the default
"increasing” order.

function x = merge ( x1 , x2 , direction , compfun )

nl = length(x1)
n2 = length(x2)

n = nl + n2
x = []
i=1
i1 = 1
i2 = 1
for i = 1:n

order = compfun ( x1(il1l) , x2(i2) )
if ( “direction ) then
order = -order
end
if ( order<=0 ) then
x(1) = x1(i1)
il = i1+1
if (i1 > m) then
x(i+1:n) = x2(i2:p)
break
end
else
x(i) = x2(i2)
i2 = i2+1
if (i2 > p) then
x(i+1:n) = x1(il1:m)
break
end
end
end
endfunction

The following compfun_default function is the default comparison function. It
returns order=-1 if x<y, order=0 if x==y and order=1 if x>y.

function order = compfun_default ( x , y )
if ( x <y ) then
order = -1

elseif ( x==y ) then
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order = 0
else
order = 1
end
endfunction

We now analyze the behavior of the mergesort function by calling it with par-
ticular inputs. In the following session, we sort the matrix x containing floating
point integers into increasing order.

-->mergesort ( x )’
ans =
1. 2. 3. 4. 5. 6.
In the following session, we configure the direction parameter to %f, so that the
order of the sorted matrix is decreasing.

-->params = init_param();
-->params = add_param(params,"direction",%f);
-->mergesort ( x , params )’
ans =
6. 5. 4. 3. 2. 1.

We now want to customize the comparison function, so that we can change
the order of the sorted matrix. In the following session, we define the comparison
function mycompfun which allows to separate even and odd floating point integers.

function order = mycompfun ( x , y )
if ( modulo(x,2) == 0 & modulo(y,2) == 1 ) then
// even < odd
order = -1
elseif ( modulo(x,2) == 1 & modulo(y,2) == 0 ) then
// odd > even
order = 1
else
// 1<3 or 2<4
if ( x <y ) then
order = -1
elseif ( x==y ) then
order = 0
else
order = 1
end
end
endfunction

We can configure the params variable so that the sort function uses our customized
comparison function mycompfun instead of the default comparison function.

-->params = init_param();
-->params = add_param(params,"compfun",mycompfun);
-->mergesort ( [4 5 1 6 2 3]’ , params )’
ans =
2. 4. 6. 1. 3. 5.

We did not configure the direction parameter, so that the default ”increasing”
order was used. As we can see, in the output argument, the even numbers are
before the odd numbers, as expected.
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4.4.3 Issues with the parameters module

There is an issue with the parameters module, which may make the user consider
default values instead of the expected ones. The parameters module does not
protect the user against unexpected fields, which may happen if we make a mistake
in the name of the key when we configure a parameter. In this section, we show how
the problem may appear from a user’s point of view. From the developer’s point of
view, we present the check param function which allows to protect the user from
using a key which does not exist.

In the following session, we call the mergesort function with the wrong key
"compffun" instead of "compfun".

-->params = init_param();
-->params = add_param(params,"compffun",mycompfun);
-->mergesort ( [4 56 1 6 2 3]’ , params )’
ans =
1. 2. 3. 4. 5. 6.

We see that our wrong "compffun" key has been ignored, so that the default com-
parison function is used instead: the matrix has simply been sorted in to increas-
ing order. The reason is that the parameters module does not check that the
"compffun" key does not exist.

This is why we suggest to use the following check param function, which takes
as intput arguments the list of parameters params and a matrix of strings allkeys.
The allkeys variable stores the list of all keys which are available in the list of
parameters. The algorithm checks that each key in params is present in allkeys.
The output arguments are a boolean noerr and a string msg. If there is no error,
the noerr variable is true and the string msg is an empty matrix. If one key of
params is not found, we set noerr to false and compute an error message. This
error message is used to actually generate an error only if the output argument msg
was not used in the calling sequence.

function [noerr ,msg] = check_param(params,allkeys)
if ( typeof (params) <> "plist" ) then
lclmsg = gettext("%s: Wrong type for "+..
"input argument #%d: %s expected.\n")
error (sprintf (lclmsg, "check_param", 1, "plist"))
end
if ( typeof (allkeys) <> "string" ) then
lclmsg = gettext("%s: Wrong type for "+..
"input argument #%d: %s expected.\n")

error (sprintf (lclmsg, "check_param", 2, "string"))
end
currkeys = getfield(l,params)
nkeys = size (currkeys,"x")
noerr = %t
msg = []

// The key #1 is "plist".
for i = 2 : nkeys
k = find(allkeys==currkeys(i))

if ( == []1 ) then
noerr = %f
lclmsg = gettext("%s: Unexpected key ""%s"" "+..
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"in parameter list.")

msg = msprintf (lclmsg,"check_param",currkeys(i))

if ( 1lhs < 2 ) then
error ( msg )

end

break

end
end
endfunction

The following version of the mergesort function uses the check_param func-
tion in order to check that the list of available keys is the matrix ["direction"
"compfun"].

function y = mergesort ( varargin )
[lhs,rhs]=argn()
if ( and( rhs<>[1 2] ) ) then
errmsg = sprintf (..
"%s: Unexpected number of arguments : "+..
"%d provided while %d to %d are expected.",..
"mergesort",rhs,1,2);
error (errmsg)
end
x = varargin (1)
if ( rhs<2 ) then
params = []
else
params = varargin(2)
end
check_param(params,["direction" "compfun"])

[direction,err] = get_param(params,"direction",’t)
[compfun,err] = get_param(params,"compfun",compfun_default)
y = mergesortre ( x , direction , compfun )

endfunction

In the following session, we use, as previously, the wrong key ”compffun” instead
of ”compfun”.

-->params = init_param();
-->params = add_param(params,"compffun",mycompfun);
-->mergesort ( [4 5 1 6 2 3]’ , params )

!--error 10000
check_param: Unexpected key "compffun" in parameter 1list.

at line 75 of function check_param called by
at line 16 of function mergesort called by
mergesort ( [4 6 1 6 2 3]’ , params )

With our fixed function, an error message is generated, which allows to see our
mistake.

4.5 The scope of variables in the call stack

In this section, we analyze the scope of variables and how this can interact with
the behavior of functions. As this feature may lead to unexpected bugs, we warn
against the use of this feature in functions which may be designed in a better way.
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Then we present two different cases where the scope of variables is poorly used and
how this can lead to difficult bugs.

4.5.1 Overview of the scope of variables

In this section, we present the scope of variables and how this can interact with the
behavior of functions.

Assume that a variable, for example a, is defined in a script and assume that
the same variable is used in a function called directly or indirectly. What happens
in this case depends on the first statement reading or writing the variable a in the
body of the function.

e If the variable a is first read, then the value of the variable at the higher level
is used.

e If the variable a is first written, then the local variable is changed (but the
higher level variable a is not changed).

This general framework is now presented in several examples.

In the following script, we present a case where the variable is read first. The
following function f calls the function g and evaluates an expression depending on
the input argument x and the variable a.

function y = £ ( x )
y =g (x)
endfunction
function y = g ( x )
y = a(l) + a(2)*x + a(3)*x"2
endfunction

Notice that the variable a is not an input argument of the function g. Notice also
that, in this particular case, the variable a is only read, but not written.

In the following session, we define the variables a and x. Then we call the
function £ with the input argument x. When we define the value of a, we are at the
calling level #0 in the call stack, while in the body of the function g, we are at the
calling level #2 in the call stack.

-->a = [1 2 3];
-->x = 2;

-—>y = f ( x )
y =

17.
-->a
a =
2. 3.

We see that the function £ was evaluated correctly, using, in the body of the function
g, at the calling level #2, the value of a defined at the calling level #0. Indeed, when
the interpreter comes to the body of g, the variable a is used, but is not defined.
This is because it is neither an input argument, nor locally defined in the body of
g. Therefore, the interpreter searches for a at higher levels in the call stack. In the
body of £, at the level #1, there is no variable a. Hence, the interpreter searches at
a higher level. At the level #0, the interpreter finds the variable a, with the content
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Level #0
————>-<:>: [1 2 31;

Level #1

function y = £ ( x )
y =9 (x)

Level #2

function y
)

g ( x)
y:?(l a

+ (2)*x + ?(3)*XA2

|

Using variable "a"...

Searching for variable "a" at level #2... none.
Searching for variable "a" at level #1... none.
Searching for variable "a" at level #0: "a" found!

Figure 25: Scope of variables. — When a variable is used, but not defined at a lower
level, the interpreter searches for the same variable at a higher level in the call stack.
The first variable which is found is used.

[1 2 3]. This variable is used to evaluate the expression y = a(1) + a(2)*x +
a(3)*x"2, which finally allows to return the variable y with the correct content.
This process is presented in the figure 25.

In practice, we should change the design of the function g in order to make the
use of the variable a more clear. The following script defines a modified version of
the function g, where the input argument a makes clear the fact that we use the
variable a.

function y = gfixed ( x , a )

y = a(l) + a(2)*x + a(3)*xx~2
endfunction

The function £ should be updated accordingly, in order to provide to the function
gfixed the argument that it needs. This is presented in the following script.

function y = ffixed ( x , a )
y = gfixed ( x , a )
endfunction

The client source code should be also updated, as in the following session.

-->a = [1 2 3];
-->x = 2;
-->y = ffixed ( x , a )
y =
17.

The functions ffixed and gfixed are, from a software engineering point of view,
much clearer that their respective previous versions.
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We now present a case where the variable a is written first. The following
function £2 calls the function g2 and evaluates an expression depending on the
input argument x and the variable a.

function y = £2 ( x )
y = g2 (x)
endfunction
function y = g2 ( x )
a = [4 5 6]
y = a(l) + a(2)*x + a(3)*x"2
endfunction

Notice that the variable a is written before it is used.
The following session uses the same script as before.

-->a = [1 2 3];
-->x = 2;

-->y = f2 ( x )
y =

38.
-->a
a =
2. 3.

We notice that the value returned by the function £2 is 38, instead of the previous
value 17. This confirms that the local variable content a = [4 5 6], defined at level
#2 was used, and not the variable a = [1 2 3], defined at level #0. Moreover, we
notice that the variable a defined at level #0 has not changed after the call to £2:
its content remains a = [1 2 3].

The call stack may be very deep, but the same behavior will always occur:
whatever the level in the call stack, if a variable is first read and was defined at a
higher level, then the value will be used directly. This is a feature which is seen
by some users as convenient. We emphasize that it might lead to bugs which may
be invisible and hard to detect. Indeed, the developer of the function g may have
inadvertently misused the variable a instead of another variable. This leads to issues
which are presented in the next section.

4.5.2 Poor function: an ambiguous case

In the two next sections, we present cases where wrong uses of the scope of variables
lead to bugs which are difficult to analyze. In the first case, we present two nested
function which produce the wrong result because the function at level #2 in the call
stack contains a bug and uses the variable defined at level #1. In the second case,
a function using a callback silently fails, because it uses the same variable name as
the user.

An ambiguous case is presented in the following perverse example. We first define
the function £3, which takes x and a as input arguments. This function defines the
variable b, then calls the function g3. The function g3 takes x and a as input
arguments, but, surprisingly, does not use the value of a. Instead, the expression
involves the variable b.

function y = £3 ( x , a )
b = [4 5 6]
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y = g3 (x , a)
endfunction
function y = g3 ( x , a )

y = b(1) + b(2)*x + b(3)*x"2
endfunction

In the following session, we define the value of a and x and call the function £3.

-->a = [1 2 3];
-->x = 2;
-->y = £f3 ( x , a )
y =

38.

-->expected = a(l) + a(2)*x + a(3)*x"2
expected =
17.

The value returned by £3 corresponds to the parameters associated with the variable
b=[4 5 6]. Indeed, the variable b used in g3 has been defined in £3, at a higher
level in the call stack.

It is obvious that, in this simple case, the function g3 is badly designed and may
contain a bug. Indeed, we see that the input argument a is never used, while b is
used, but is not an input argument. The whole problem is that, depending on the
context, this may or may not be a bug: we do not know.

4.5.3 Poor function: a silently failing case

In this section, we present a typical failure caused by a wrong use of the scope of
variables.
The following function myalgorithm, provided by the developer, uses an order

1 numerical derivative formula, based on a forward finite difference. The function
takes the current point x, the function f and the step h, and returns the approximate
derivative y.

// From the developer

function y = myalgorithm ( x , £ , h )

y = (£(x+h) - £(x))/h
endfunction

The following function myfunction, written by the user, evaluates a degree 2 poly-
nomial by a straightforward formula. Notice that the evaluation of the output ar-
gument y makes use of the point x, which is an input argument, and the parameter
a, which is not an input argument.

// From the user

function y = myfunction ( x )

y = a(l) + a(2)*x + a(3)*x~2
endfunction

In the following session, we set a, x, h and call myalgorithm in order to compute a
numerical derivative. We compare with the exact derivative and get a good agree-
ment.

-->a [1 2 31;
-->x = 2;
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14.
-->expected = a(2) + 2 * a(3)*x
expected =

14.

The scope of the variable a allows to evaluate the function myfunction. Indeed, the
variable a is defined by the user at the level #0 in the call stack. When the body
of myfunction is reached, the interpreter is at the level #2, where the variable a
is used, but not set. Therefore, the interpreter searches for a variable a at a higher
level in the call stack. There is no such variable at the level #1, which is why the
variable a defined at the level #0 is used, finally producing the expected result.

In fact, this way of using the scope of variables is a dangerous programming
practice. Indeed, the user make assumptions about the internal design of the
myalgorithm function, and these assumptions may be false, leading to wrong results.

We change slightly the function provided by the developer, and renamed the step
as a, instead of the previous h.

// From the developer
function y = myalgorithm2 ( x , £ , a )

y = (f(x+a) - f(x))/a
endfunction

In the following session, we execute the same script as previously.

-->a = [1 2 3];

-=>x = 2;

-->h = sqrt(%eps);

-->y = myalgorithm2 ( x , myfunction , h )

!--error 21
Invalid index.
at line 2 of function myfunction called by
at line 2 of function myalgorithm2 called by
y = myalgorithm2 ( x , myfunction , h )

The ”Invalid index” error is the consequence of the fact that the variable a has
been overwritten in the body of myalgorithm2, at the level #1 in the call stack.
As previously, when the body of the function myfunction is reached, at the level
#2 in the call stack, the interpreter searches for a variable a at a higher level. At
the level #1, in myalgorithm?2, the interpreter finds the variable a, which contains
the step of the finite difference formula. This variable a is a matrix of doubles with
only 1 entry. When the interpreter tries to evaluate the statement a(1) + a(2)x*x
+ a(3)*x72, this fails since neither a(2) nor a(3) exist, that is, the integers 2 and
3 are invalid indices of the variable a.

The previous error was, in fact, a nice one. Indeed, it warns us that something
wrong happened, so that we can change our script. In the next case, the script will
pass, but with a wrong result and this is a much more dangerous situation.

We change again the body of the algorithm provided by the developer. This
time, we set the variable a to an arbitrary matrix of doubles, as in the following
myalgorithm3 function.
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// From the developer
function y = myalgorithm3 ( x , £ , h )
a = [4 5 6]
y = (£(x+h) - £(x))/h
endfunction
The body is somewhat strange, since we do not make use of the variable a. But the
function is still valid. Actually, this represent more complicated cases, where the
implementation of the myalgorithm3 is using a full, possibly large, set of variables.
In this case, the probability of using the same variable name as the user is much
higher.
In the following session, we call the myalgorithm3 function and compare with
the expected result.
-->a = [1 2 3];
-=>x = 2;
-->h = sqrt(%eps);

-->y = myalgorithm3 ( x , myfunction , h )
y =
29.
-->expected = a(2) + 2 *x a(3)*x
expected =
14.

We see that the script did not produce an error. We also see that the expected
result is completely wrong. As previously, the variable a has been re-defined at the
level #1, in the body of the myalgorithm3. Therefore, when the expression a(1) +
a(2)*x + a(3)*x"2 is evaluated, the value [4 5 6] is used, instead of the matrix
that the user provided at a higher level.

In our particular case, it is easy to debug the problem, because we have the
exact formula for the derivative. In practice, we probably do not have the exact
formula (which is why we use a numerical derivative...), so that it would be much
more difficult to detect and, if detected, solve the issue.

Using a variable defined at a higher level in the call stack may be considered as a
bad programming practice. In the case where this was not wanted by the developer
of the function, this may lead to bugs which are difficult to detect and may stay
unnoticed for a long time before getting fixed.

Used in this way, the scope of variables may be considered as a bad programming
practice. Still, it may happen that a function needs more than one input argument
to be evaluated. This particular issue is addressed in the section 4.6.4, where we
present a method to provide additional input arguments to a callback.

4.6 Issues with callbacks

In this section, we analyze particular issues with callbacks. We first consider in-
teractions between the names of the functions of the user and the developer. We
present two different types of issues in specific examples. Then we present methods
which allows to partially solve this issue. In the final section, we present a method
which allows to manage callbacks with additional arguments. The method that we
advocate is based on lists, which provide a good flexibility, since a list can contain
any other data type.
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We emphasize that the two first issues that we are going to present in the sections
4.6.1 and 4.6.2 are not bugs of the interpreter. As we are going to see, these issues
are generated by the scope of variables which has been presented in the previous
section. It is likely that these issues will remain in future versions of the interpreter.
Therefore, it is worth to analyze them in some detail, so that we can understand
and solve this particular problem efficiently.

4.6.1 Infinite recursion

In this section, we present an issue which generates an infinite recursion. This issue
occurs when there is an interaction between the name of the function chosen by the
developer and the user of an algorithm. This is why our analysis must separate the
developer’s point of view on one side, and the user’s point of view on the other side.
The following myalgorithm function, provided by a developer, takes the variables

x and f as input arguments and returns y. The variable £ is assumed to be a function
and the expression y=f (x) is evaluated in a straightforward way.

// At the developer level

function y = myalgorithm ( x , f )

y = f£(x)
endfunction

The following myfunction function, provided by a user, takes x as an input
argument and returns y. In order to compute y, the user applies a second function
f that he has written for that purpose.

// At the user level
function y = myfunction ( x )
y=1%f (x)
endfunction
function y = £ ( x )
y = x(1)72 + x(2)°2
endfunction

In the following session, the user sets the variable x and calls the myalgorithm
function with the input arguments x and myfunction.

-->x [1 21;
-=>y myalgorithm ( x , myfunction )
!--error 26
Too complex recursion! (recursion tables are full)

at line 2 of function myfunction called by
at line 2 of function myfunction called by
at line 2 of function myfunction called by
[...]

This recursion, which is in theory infinite, is, in fact, finite, because Scilab authorizes
only a limited number of recursive calls.

The cause of this failure is the conflict of the names of the developer’s and user’s
function which, in both cases, uses the variable name f. From the user’s point of
view, the function myfunction simply calls £. But the interpreter does not see the
script like this. From the interpreter’s point of view, the symbols myfunction and
f are variables which are stored in the interpreter’s internal data structures. The
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variable myfunction has a particular data type: it is a function. The same is true
for the user’s f. Both these variables are defined at the level #0 in the call stack.
Hence, before the call to myalgorithm, at the level #0, the function £ is defined

by the user, with the body "y = x(1)°2 + x(2)~2". When myalgorithm is called,
we enter in the level #1 and the variable f is considered as an input argument:
its content is f=myfunction. Hence, the function £, which was previously defined
by the user, has been overwritten and has lost its original value. The interpreter
evaluates the expression y = £ ( x ), which calls back myfunction. In the body
of myfunction, at the level #2, the interpreter finds the expressiony = £ ( x ).
Then the interpreter searches for a variable £ at the current level in the call stack.
There is no such variable £. Hence, the interpreter searches for a variable f at a
higher level in the call stack. At the level #1, the variable f is defined, with content
f=myfunction. This value is then used at the level #2. The interpreter evaluates
the expression y = myfunction ( x ) and enters at level #3. Then the interpreter
searches for a variable f at the current level. There is no such variable at this level.
As previously, the interpreter searches for a variable f at a higher level in the call
stack. Again, the interpreter calls £, which is, in fact the function myfunction itself.
This process repeats over and over again, until the interpreter reaches the maximum
authorized size of the call stack and generates an error. The following pseudo-session
details the sequence of events.

-->y = myalgorithm ( x , myfunction )

-1->f = myfunction

-1->y = f(x)

-1->y = myfunction(x)

-2->y = f ( x )

-2->y = myfunction ( x )

etc...

We emphasize that the problem is a consequence of the scope of variables in the

Scilab language. It is a straightforward implication of the following features of the
language.

e A function is stored as any other variable (but with a particular data type).

e If a variable is unknown at level #k, it is searched at higher levels in the

call stack until it is either found or an error is generated (the exact error is
”Undefined variable”).

Notice that there is no mean for the user to know that the developer has used the
variable name f. The converse is also true for the developer, who cannot predict that
the user will use the variable name f. Notice that there is little way for the user to
change this situation. The myalgorithm function may be provided by an external
module. In this case, changing the name of the variable used in the developer’s
function may be impossible for the user. As we are going to see later in this section,
the user can still find a solution, based on a small source code reorganization.

4.6.2 Invalid index

In this section, we present a situation where the interpreter generates a ”Invalid
index” error, because of a conflict between the user and the developer’s function
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names.

In the following myalgorithm function, provided by the developer, we set the
local variable £ to 1. Then we call back the userf function with the input argument
%, and return the output argument y.

// At the developer 1level

function y = myalgorithm ( x , userf )
f =1
y = userf (x)

endfunction

Notice that the variable f is set, but not used. The function is still valid and this
does not change our analysis.
The following myfunction function, provided by the user, calls the function £
with the input argument x and returns the output argument y.
// At the user level
function y = myfunction ( x )
y=1f (x)
endfunction
function y = £ ( x )
y = x(1)"2 + x(2)°2
endfunction

In the following session, we set the variable x and call the myalgorithm function.
This generates a "Invalid index” error in the body of myfunction.

-->x = [1 2];
-->y = myalgorithm ( x , myfunction )
!--error 21
Invalid index.
at line 2 of function myfunction called by
at line 4 of function myalgorithm called by

y = myalgorithm ( x , myfunction )

The explanation is the following. At the level #0 in the call stack, the function
f is defined as the user expects. In the body of myalgorithm, we are at level #1 in
the call stack. The variable f is updated with the f=1 statement: f is now a matrix
of doubles. Then, the interpreter evaluates the expression y = userf(x). Since
userf is myfunction, the interpreter calls the function myfunction and enters in
the level #2 in the call stack. At this level, the interpreter evaluates the expression y
= f ( x ). The interpreter then searches for the variable £ at the level #2: there
is no such variable at this level. The interpreter then searches for the variable f
at a higher level. At the level #1, the interpreter finds the variable £, which is a
matrix of doubles. In this context, the expression y = £ ( x ) has no sense: the
variable x is interpreted as the index of the matrix of doubles f. Since x=[1 2],
the interpreter looks for the entries at indices 1 and 2 in £. But £ contains a 1-by-1
matrix of double, that is 1. Hence, there is only one entry in £, and this is why the
error "Invalid index” error is generated.

As in the previous section, the user cannot predict the variable names chosen by
the developer and the converse is true for the developer.

In the next section, we suggest methods to solve these callback problems.
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4.6.3 Solutions

In this section, we present solutions for the callback issues that we have presented
earlier. Solving the problem can be done by two different ways.

e Change the developer’s function, so that there is less chance to get a conflict
with user’s variable names.

e Change the user’s function, so that he can use the developer’s function as is.

Obviously, we may also do both. In general, it is the task of the developer to
provide functions which are well enough designed so that the user does not have to
be troubled by strange bugs. This is why we present this update first. The update
of the user’s function is presented in the second part of this section.

The following modified function presents the method that the developer can
use to write the myalgorithm function. We can see that the second argument
_myalgorithm f__ has a long and complicated name. This reduces the chances of
getting a conflict between the developer’s and the user’s variable names.

function y = myalgorithm ( x , __myalgorithm_f__ )
y = myalgorithm_f__ (x)

endfunction

This is a workaround: there is still the possibility that the user get an error. Indeed,
if the user chose the variable name __myalgorithm f__, there is still a conflict between
the developer’s and the user’s variable names. But this is much less likely to happen.
The following modified function presents the method that the user can use to
write the myfunction function. Instead of defining the function f outside of the
body of myfunction, we define it inside. In the new version, the variable f is now
defined locally, inside myfunction. This limits the visibility of the local function £,
which can only be accessed by myfunction (and lower levels), and does not appear
at the global scope anymore. Hence, when we call £, the interpreter does not search
at higher levels in the call stack: the variable f is defined at the current level.
function y = myfunction ( x )
function y = £ ( x )
y = x(1)°2 + x(2)°2
endfunction
y =f (x)
endfunction
In the following session, we call the myalgorithm function with the updated function
myfunction.

[1 21;
myalgorithm ( x , myfunction )

-=->X
y =
5

As we can see, the issue is now solved and we get the expected result.

4.6.4 Callbacks with extra arguments

In this section, we present a method which allows to solve issues associated with
callbacks with extra arguments. The method that we advocate is based on lists,
which provide a good flexibility, since it can contain any other data type.
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When we consider an algorithm which takes a callback as input argument, the
header of the function being called back is generally definitely fixed, by a choice of
the developer of the algorithm. But the user of the algorithm may want to provide
a function which does not exactly matches the required header. For example, the
algorithm may expect a function with the header y=£ (x). But the user has a function
which requires the additional parameter a. In order to avoid confusions created by
the use of the scope of variables, the user may chose to update the header of the
function so that the variable a is now an input argument. This leads to the header
y=g(x,a). In this case, we assume that the additional argument a is constant,
which means that the algorithm will not modify its content. Simply providing the
function g may not work, because the header does not match. In order to illustrate
this situation, we analyze a case where we want to compute a numerical derivative.

The following myderivativel function uses a forward finite difference formula
to evaluate a numerical derivative.

function fp = myderivativel ( __myderivative_f__ , x , h )

fp = (__myderivative_f__(x+h) - __myderivative_f__(x))/h
endfunction

We consider the function myfun, which computes the cosine of a degree 2 polyno-
mial.

function y = myfun ( x )
y = cos (1+2*x+3*x"2)
endfunction

In the following session, we compare the numerical derivative with the exact deriva-
tive.

-->format ("e",25)
-->x = Ypi/6;
heps ~(1/2);
-->fp = myderivativel ( myfun , x , h )
fp =
- 1.38097565857377052307D+00
-->expected = -sin(1+2*x+3*x72) * (2+6%*x)
expected =
- 1.380976033975957140D+00

|

|
\'4
=g

]

As the two values consistently match, we are now confident in our implementation.
But it would be clearer if the parameters of the polynomial were stored in a
matrix of doubles. This leads to the following function myfun2, which takes the
point x and the parameter a as input arguments.
function y = myfun2 ( x , a )
y = cos(a(1)+a(2)*x+a(3)*x"~2)
endfunction
In order to manage this situation, we modify the implementation of the finite
difference algorithm and create the myderivative?2 function, which will be detailed
later in this section. In the following session, we call myderivative2 and provide the
list 1ist(myfun2,a) as the first argument. The myderivative2 function assume
that the first element of the list is the name of the function and that the remaining
elements in the list are the additional arguments of the function to be evaluated.
Here, the only additional argument is a.
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-->x = %pi/6;
-->a = [1 2 3];
-->h = Yeps~(1/2);
-->fp = myderivative2 ( list(myfun2,a) , x , h )
fp =
- 1.380975857377052307D+00
-->expected = -sin(a(l)+a(2)*x+a(3)*x"2) * (a(2)+2*a(3)*x)

expected =
- 1.380976033975957140D+00

The following myderivative2 function provides a flexible numerical derivative
implementation, which allows for additional arguments in the header of the function
to be differenciated.

function fp = myderivative2 ( __myderivative_f__ , x , h )
tyfun = typeof (__myderivative_f__)
if ( and(tyfun<>["1list" "function" "fptr"]) ) then
error ( msprintf("%s: Unknown function type: %s",..
"myderivative2",tyfun))
end
if ( tyfun == "list" ) then
nitems = length(__myderivative_f__)
if ( nitems<2 ) then
error ( msprintf ("Y%s: Too few elements in list: %d",..
"myderivative2" ,nitems))
end
__myderivative_f__fun__ = __myderivative_f__ (1)
tyfun = typeof(__myderivative_f__fun__)
if ( and(tyfun<>["function" "fptr"]) ) then
error ( msprintf("%s: Unknown function type: %s",..
"myderivative2" ,tyfun))

end
fxph=__myderivative_f__fun__(x+h,__myderivative_f__(2:%))
fx = __myderivative_f__fun__ ( x , __myderivative_f__(2:$))
else
fxph = __myderivative_f__ ( x + h )
fx = __myderivative_f__ ( x )
end

fp = (fxph - fx)/h
endfunction

At line #2, we compute the type of the input argument __myderivative f__. If
this argument is neither list, nor a function (i.e. a macro), nor a function pointer
(i.e. a primitive), then we generate an error. Then the code considers two cases. If
the argument is a list, then we check in the lines #8 to #12 the number of items in
the list. Then, at line #13, we store in a separate variable the first element, which
is assumed to be the function. In the lines #14 to #18, we check the type of this
variable and generate an error if the variable is not a function. Then, at lines #19
and #20, we evaluate the two function values fxph and fx. Notice that we use the
expression __myderivative_f__(2:$) in order to provide the additional arguments
to the called function. Because of the special way that the elements are extracted
from a list, this creates the number of input arguments which is required by header
of the function which is being called.

In practice, the method that we have presented is extremely flexible. More that
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deff on-line definition of function
execstr execute statements in string
evstr evaluation of string

Figure 26: Meta programming functions.

one additional argument can be provided by the function. Actually, the number
of additional arguments may be reduced by using a list gathering all the necessary
parameters. Indeed, lists can be nested, which allows to gather all the required
parameters into one single additional variable.

4.7 Meta programming: execstr and deff

In this section, we present functions which allow to execute statements which are
defined as strings. As these strings can be dynamically generated, we can make
programs which have a flexibility level which cannot be achieved by other means.
In the first part, we present the execstr function and give a sample use of this
extremely powerful function. In the second part, we present the deff function,
which allows to dynamically create functions based on two strings containing the
header and the body of the function. In the final part, we present a practical use of
the execstr function, where we make the glue between two modules which cannot
be modified by the user and which do not match exactly.

The figure 26 present the functions which allow to dynamically execute state-
ments based on strings.

4.7.1 Basic use for execstr

In this section, we present the execstr function.

The execstr function takes as its first input argument a string which contains
a valid Scilab statement. Then, the function executes the statement as if it was a
part of the original script, at the same level in the call stack.

In the following session, we dynamically generate a string, containing a statement
which displays the string "foo". We first define the variable s, which contains the
string "foo". Then we set the variable instr, by concatenating the variable s with
the strings disp(" and "). This is performed with the + operator, which allows to
concatenate its operands. The double quotes " are doubled, which makes so that the
expression "" is interpreted as a " character inside the target string. Indeed, if this
quote does not appear twice, it is interpreted as the end of the string: doubling the
quote allows to "escape” the quote character. Finally, we run the execstr function,
which displays "foo".

-->s = "foo"

s =

foo
-->instr = "disp(""" + s + """
instr =

disp("foo")
-->execstr (instr)
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The argument of execstr can contain any valid Scilab statement. For example,
we can dynamically set a new variable, with a dynamically created content. In the
following session, we create a string instr containing the statement z=1+2. Then
we evaluate this expression and check that the variable z has, indeed, been set to

-->instr = "z="+string(x)+"+"+string(y)
instr =
z=1+2
-->execstr (instr)
-=>z
z =
3.

As another example of the use of execstr, we can read a collection of data files.
Assume that the file datafilel.txt contains the lines

1 23
4 5 6

and the file datafile2.txt contains the lines

7 8 9
10 11 12

The following script allows to read these two files in sequence. The read function
takes a string representing a file containing a matrix of doubles, and the number of
rows and columns in the matrix. The script sets the variable data, which contains
a list of matrices containing the data that have been read in the two files.
data = 1list ();
for k =1 : 2
instr = "t = read(""datafile" + string(k) + ".txt"",2,3)"
execstr (instr)
data($+1)=t
end

The following session shows the dynamic of the previous script.

instr =
t = read("datafilel.txt",2,3)
data =
data (1)
1. 2. 3.
4. 5. 6.
instr =
t = read("datafile2.txt",2,3)
data =
data (1)
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1. 2. 3.

4., 5. 6.
data (2)

7. 8. 9.

10. 11. 12.

4.7.2 Basic use for deff

The deff function allows to dynamically define a function, from two strings con-
taining the header and the body of the function.

In the following session, we define the function myfun, which takes the matrix of
doubles x as input argument and returns the output argument y. First, we define
the header of the function as the string "y=myfun(x)" and set the header variable.
Then we define the body of the function and, finally, we call the deff function,
which creates the required function.

-->header = "y=myfun(x)"
header =

y=myfun (x)

-->body = [

-=>"y (1) = 2*x(1)+x(2)-x(3)"2"
-=>"y(2) = 2*x(2) + x(3)"

Iy (1) = 2*xx(1)+x(2)-x(3)"2 !
! !
ly(2) = 2*%x(2) + x(3) !
-->deff (header ,body)

The following session shows that the new function myfun can be used as any
other function.

-->x = [1 2 3]
X
1. 2. 3.
-->y = myfun(x)
y

~N o

The only difference is the type of a function created by deff, as presented in the
section 4.1.1. In the following session, we show that a function created by deff has
type 13, which corresponds to a compiled macro.
-->type (myfun)
ans =
13.
-->typeof (myfun)
ans =
function

If we add the "n" argument to the call of deff, this tells the interpreter to create
an uncompiled macro instead, which produces a function with type 11.

-->deff (header ,body,"n")
Warning : redefining function: myfun.
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Use funcprot (0) to avoid this message
-->type (myfun)
ans =
11.
-->typeof (myfun)
ans =
function

We emphasize that the execstr function could be used instead of deff to create
a new function. For example, the following script shows a way of defining a new
function with the execstr, by separately defining the header, body and footer of
the function. These strings are then concatenated into a single instruction, which is
finally executed to define the new function.

header =
body = [
"y(l)
"y (2)
]
footer = "endfunction"
instr = [

header

body

footer

]

execstr (instr)

"function y = myfun(x)"

2%¥x (1)+x(2)-x(3)~2"
2xx(2) + x(3)"

4.7.3 A practical optimization example

In this section, we present a practical use-case for the methods that we have pre-
sented in previous sections.

In this example, we use the optim function, which is a numerical optimization
solver. We present a situation where we need a function to define an adapter (i.e.
a "glue”) function which connects optim to a module providing a collection of op-
timization problems. In the first method, we define an adapter function and pass a
callback with extra arguments to the optim function. In the second method, we use
the execstr function to create a function which body is dynamically generated.

The example that we have chosen might seem complicated. In practice, though, it
represents a practical software engineering problem where only non-trivial solutions
can be used.

Assume that we are interested in the evaluation of the performance of the non-
linear optimization function optim provided by Scilab. In this case, we can use the
Atoms module "uncprb”, which provides a collection of 23 unconstrained optimiza-
tion test problems known as the More, Garbow and Hillstrom collection. In order
to install this module, we use the statement:

atomsInstall ("uncprb")
and restart Scilab.
We emphasize that we consider here the point of view of a user which cannot

modify any of these packages, that is, cannot modify neither the optim function,
nor the uncprb module. As we will soon see, there is not an exact match between
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the header of the objective function which is required by optim and the header of
the test functions which are provided by the uncprb module. More precisely, the
number and type of input and output arguments which are required by optim do
not match the number and type of input and output arguments which are provided
by uncprb. This is not caused by a poor design of both tools: it is in fact impossible
to provide a "universal” header, matching all the possible needs. Therefore, we
have to create an intermediate function, which makes the ”glue” between these two
components.

The uncprb module provides the function value, the gradient, the function vector
and the Jacobian for all the test problems, and provides the Hessian matrix for 18
problems. More precisely, the module provides the following functions, where nprob
is the problem number, from 1 to 23.

[n,m,x0]=uncprb_getinitf (nprob)

f=uncprb_getobjfcn(n,m,x,nprob)

g=uncprb_getgrdfcn(n,m,x,nprob)
The uncprb_getinitf function returns the size n of the problem, the number m of
functions and the initial guess x0. Indeed, the objective function is the sum of the
squares of m functions. The uncprb_getobjfcn function returns the value of the
objective function while the uncprb_getgrdfcn function returns the gradient.

The optim function is a nonlinear unconstrained optimization solver, providing
several algorithms for this class of problems. It can manage unconstrained or bound
constrained problems. The simplest calling sequence of the optim function is

[fopt ,xopt]=optim(costf ,hx0)

where costf is the cost (i.e. objective) function to minimize, x0 is the starting point
(i.e. initial guess), fopt is the minimum function value and xopt is the point which
achieves this value. The cost function costf must have the header

[f,g,ind]l=costf (x,ind)

where x is the current point, ind is a floating point integer representing what is to
be computed, f is the function value and g is the gradient. On output, ind is a
flag sent by the function to the optimization solver, for example to interrupt the
algorithm.

We must first get the problem parameters, so that we can setup the glue function.
In the following script, we get the parameters of the first optimization problem.

nprob = 1;
[n,m,x0] = uncprb_getinitf (nprob);

The question is: how to glue these two components, so that optim can use
the uncprb module? Obviously, we cannot pass neither the uncprb_getobjfcn nor
the uncprb_getgrdfcn functions as input arguments to optim, since the objective
function must compute both the function value and the gradient. The solution to
this problem is to define an intermediate function, which has the header required
by optim and which calls the uncprb_getobjfcn and uncprb_getgrdfcn functions.
The only problem is the management of the nprob, n and m, which depends on the
problem to solve. There may be two different ways to do this.

e We can define a function with the extra arguments nprob, n and m and use a
special feature of optim to manage them.
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e We can define a function which is dynamically defined with execstr so that,
in the end, the variables nprob, n and m are constants.

In the following, we explore both approaches.

The first method is based on the management of extra arguments of a callback
which has been presented in the section 4.6.4. We define the objective function
costfun, which has the expected calling sequence, with the extra arguments nprob,
n and m.

function [f,g,ind]l=costfun(x,ind,nprob,n,m)
[n,m,x0] = uncprb_getinitf (nprob)
// Make a column vector
x = x(:)
f = uncprb_getobjfcn(n,m,x,nprob)
g = uncprb_getgrdfcn(n,m,x,nprob)
endfunction

We can then use a special feature of the optim function, which manages the case
where the objective function needs extra input arguments. The argument costf
can also be the list (myfun,al,a2,...). In this case, myfun, the first element in
the list, must be a function and must have the header:

[f,g,ind]l=myfun(x,ind,al,a2,...)
We use this feature in the following script.

nprob = 1
[n,m,x0] uncprb_getinitf (nprob);
myobjfun = list(costfun,nprob,n,m);
[fopt ,xopt]l=optim(myobjfun,bx0)

1| o~

The previous script produces the following output.
-->[fopt ,xopt]=optim(myobjfun,bx0)
xopt =
1.
1.
fopt =
0.

We know that the global minimum of this problem is x* = (1, 1), so that the previous
result is correct.

The second method is based on the dynamic creation of the objective function
with the execstr function.

In the following script, we define the objfun function, which will be passed as
an input argument to the optim function. The body of objfun is dynamically
defined by using the variables nprob, m and n which have been previously defined.
The header, body and footer of the function are then concatenated into the instr
matrix of strings.

header = "function [fout,gout,ind]l=objfun(x,ind)";
body = [
"fout=uncprb_getobjfcn("+string(n)+","+string(m)+..
",x,"+string (nprob)+")"
"gout=uncprb_getgrdfcn("+string(n)+","+string(m)+..

",x,"+string (nprob)+")"
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1;

footer = "endfunction"
instr = [

header

body

footer

]

The previous source code is rather abstract. In fact, the generated function is simple,
as shown by the following session.

-->instr

instr =

!function [fout,gout,ind]=objfun(x,ind) !

!fout=uncprb_getobjfcn(2,2,x,1) !

lgout=uncprb_getgrdfcn(2,2,x,1) !

lendfunction !
As we can see, the input argument x of the objfun function is the only one remain-
ing: the other parameters have been replaced by their actual value for this particular
problem. Hence, the objfun function is cleanly defined, and does not use its envi-
ronment to get the value of nprob, for example. We emphasize this particular point,
which shows that using the scope of variables through the call stack, as presented
in the section 4.5.1, can be avoided by using the execstr function.

In order to define the objective function, we finally use execstr.

execstr (instr)

In the following session, we call the optim function and compute the solution of
the first test problem.

-->[fopt ,xopt]=optim(objfun,x0)

xopt =
1.
1.

fopt =
0.

4.8 Notes and references

The parameters module was designed by Yann Collette as a tool to provide the
same features as the optimset/optimget functions in Matlab. He noticed that the
optimset/optimget functions could not be customized from the outside: we have
to modify the functions in order to add a new option. This is why the parameters
module was created in a way which allows to allow the user to manage as many
options as required.

The scope of variables has been presented in the section 4.5.1. This topic is also
presented in [50].

The issues with callbacks have been presented in section 4.6. This topic has been
analyzed in the bug reports #7102, #7103 and #7104 [12, 11, 9].

In [49], Enrico Segre describe several features related to functions.

In the section 4.3, we have presented a template for the design of robust functions.
Using this template allows to be compatible with the code convention presented by
Pierre Maréchal in [33].

102



tic, toc | measure user time
timer measure system time

Figure 27: Performance functions.

In the section 4.3, we have presented rules to write robust functions. Writing
such a robust function requires a large number of checks and may lead to code
duplication. The ”apifun” module [8] is an experimental attempt to provide an API
to check for input arguments with more simplicity.

5 Performances

In this section, we present a set of Scilab programming skills which allow to produce
scripts which are fast. These methods are known as wvectorization and is at the core
of most efficient Scilab functions.

We show how to use the tic and toc functions to measure the performance of
an algorithm. In the second section, we analyze a naive algorithm and check that
vectorization can dramatically improve the performance, typically by a factor from
10 to 100, but sometimes more. Then we analyze compiling methods and present
the link between the design of the interpreter and the performances. We present the
profiling features of Scilab and give an example of the vectorization of a Gaussian
elimination algorithm. We present vectorization principles and compare the per-
formances of loops against the performances of vectorized statements. In the next
section, we present various optimization methods, based on practical examples. We
present the linear algebra libraries used in Scilab. We present BLAS, LAPACK, AT-
LAS and the Intel MKL numerical libraries which provide optimized linear algebra
features and can make a sensitive difference with respect to performance of matrix
operations. In the las