/i

Electric Motor Optimization

Yann Debray — Scilab — ESI Group

Abstract

With today’s trend for electric car, every car maker must go back to specifications and systems
engineering to replace basic powertrain functions. In order to make this electric car-paradigm a
reality, suppliers have therefore to provide car manufacturers with optimal design taking into

account new design tradeoffs such as autonomy and power to be delivered.

In this context, ESI has been working with both manufacturers and suppliers of the automotive
domain on optimizing the design of electric motors (and associated batteries). Considering that
such design requires many geometric changes (number of poles rotor/stator, number of coil’s
turns, number of phases, ...), Finite Element Analysis (FEA) prove to be too expensive in terms of
computing power for large design space exploration on a dynamic model (each simulation taking

several hours).

Following clients’ needs, ESI solutions are as followed: First, simulate multi-physics static finite
element models. Second, integrate reduced models in dynamic system models with SimulationX.
Second, integrate the solution with Scilab through the Functional Mock-up Interface (FMI) and

giving access to the results via a tailored application.

Model reduction and optimization techniques can then be leveraged in order to consider the
changes in the geometry and the design parameters. Future developments will be about

interfacing additional external tools & libraries with Scilab (like Octave for Matlab compatibility)

to serve as an integration hub and deployment platform for both academics & industries.

In this paper, we display the benefits of an approach around Model-based Design and
Optimization, coming from the experience of the Scilab & SimulationX teams with ESI
Group.

SimulationX is a Model-Based Design environment relying on the open language
Modelica, for the simulation of mechatronic systems.

Scilab is an open-source software for numerical computing and scientific programming.

Every month, 100 000 engineers and scientists download Scilab around the world

1. Electric motor modeling

System Modeling enables full vehicle simulation at different levels of fidelity. In the
following graph, we represent the architecture of a vehicle, around the main engineering

department (body, interior, chassis & powertrain).

CAR BODY INTERIOR

CHASSIS & SUSPENSION POWERTRAIN

In this paper, we will address a central topic in the engineering of electric vehicle:

The design and optimization of an electric motor.

In order to define the requirement of such a system we need to cascade the expected
performances of an electric vehicle to the different sub-systems, model and analyze the

interactions, and freeze the design at some point of the vehicle program.

1.1. Modeling workflow
The following workflow represents the 3 main steps of the modeling and optimization.
Existing 2D finite element models of previous generation of motors are leveraged in order

to optimize the main elements of the design:

- Number of Poles of the motor (Rotor and Stator),
- Number of Turns of the coil

- Operating Voltage

- Operating Speed

Static Finite Element Model Dynamic System Model Optimization Application

;@; SIMULALIoN X

i I
\ | [}l\li[\'llt‘x\i M-t

1.2. Static Finite Element Model
The typical Finite Element Model (FEM) would be simulated in the static domain and
would take around 8 hours (static meaning for every angular position of the rotor). A
simulation in the dynamic domain will take about 30 hours. Further there could be about
3-4 continuous and discrete variables that participate in characterizing the problem.
This would need a huge number of runs to come to grips with the behavior. This coupled
with multi-objective optimization would lead to a prohibitive amount of computing time,

that practically renders optimization on a dynamic finite element model unviable.

What is considered here is to use a system model in order to perform multi-objective
optimization on the design, based on calibration values from the finite element model.
The values that are provided as output of this models are for flux linkage and torque

(depending on angle in degrees and current):

Flux linkage

coE
TS
TSR N
oSSy

<o SRR
e et
ot

<% o s
e

[sl 2Beyuy xnyy
[anbicy

400

o 300

280

electiical rotor angle [deg]

200
electiical wtor angle [deg]

200 200

1.3. Dynamic system model
The modeling of a dynamic system was performed in the following steps:
* Single phase motor model development
* Three phase motor model development
+ Modelling voltage supply and power switches (switching circuit)

+ Correlation with test data (not covered un this paper)

1.3.1. Single phase motor
In order to get started with a simplified model, we engaged with the modeling of a single-
phase motor:

* Simple model

* Single phase with switching

* Imports Torque and Lambda data

* Dynamically plot values of

Current

Torque

Power

n Gamne o

singlePhaseMotor!.Tar, ..

File Edit View Insert Anaysis Options Window 7
e oQ |- yl']D L‘.IE“.LMITA Pl e F= = singlePhaseMotort TairsinglePhaseMotort.i

Nm — singlePhaseMotor Tair Nm —— singlePhaseMotor Tair/singlePhaseMotorli

003 004 005 0.06 007 008 o 10 20 30 40 50 60 70

“ 4 r n Y singlePhaseMotord.Tair, ...

1.3.2. Three Phase Motor Model — VVersion 1

Once this simple model has shown some of the basic performance indicators that we were
interested in, we switched to the modeling of a three phase motor:
* Three phase star connected motor
* Rotor position based switching
* Simple three phase inverter switching circuit topology
* Imports Torque and Lambda data
* Fixed no. of poles
+ Dynamically plot (vs time or any desired quantity)
* Current
* Air gap torque

« Power

1]
-

%1'*—".;*

threePhaseMotor! Tair, .. - o b3

File Edit View Insert Analsis Options Window 7

#ooQ - L [0 b b M Elem B2 =thwecPhaseMotortTair

sl
=T

By
LL/\
Pl

Nm threePhaseMotort Tair

100

ofl HHH ‘H\H H.H T |HH‘\H|H‘. H\ \ LA

20— p

W 4 ¥ N \threePhaseMotort.Tair, ..

1.3.3. Three Phase Motor Model — Version 2 (Voltage Supply and Power
Switches)

The three phases are now independent, and each phase has two coils controlled by

simultaneously switched H Bridge. We also implement a variable no. of poles and turns.

Mechanical Output Power - Pmech_mean.y, .. - [m] X
= File Edit View Insert Analysis Options Window 7
#£60Q - L, L‘.E T 1A, 1 T2 =threePhaseMotarNDdual Coill Tair
’— |T|- ——— Mechanical Output Power - Pmech_mean.y threePhaseMotorNDdualCoil 1. Tair
- - s t; - - 0 Electrical Power at Supply - Pel_mean.y Nm
] M M
20 200 [4 ' ' ' ' | I '
10 | | :
0 100t
-10
20 o
30 N N I Y T T N S | -0 g s
0.00 0.02 0.04 0.06 0.08 s 0.10 0.00 0.02 0.04 0.06 0.08 0.10
» % Mechanical Output Power - Pmech_mean.y, ...

2. Import the model with the Functional Mock-up Interface

2.1. Introduction of system in the modeling workflow
It might seem peculiar that in the scenario of this paper and project, we proceed from a
finite element model to a system model, as represented in the modeling workflow section.
Typically, the process we observe around model-based design and model-based systems

engineering introduces a V cycle, providing a functional system layer on top of the
component layer.

Engineering Manufacturing In-Service

Element

In large automotive manufacturers, the motor department are then provided by
functional requirements from the systems engineers, and component models are

developed based on this to fulfill the technical specification.

2.2. Functional Mock-up Interface

The Functional Mock-up Interface standard has been initiated and coordinated by
Daimler and has been developed within the MODELISAR consortium from 2008 to 2011,
alongside the MODELICA open source language.
The main benefits of this standard are to:

- Free the model unit (FMU) from license restrictions

- Separate the model authoring tool from model execution tools

- Deploy from few simulation specialists to designers, domain specialists, control

engineers

In terms of implementation, two modes are available:

- Model-exchange: the model is running on the solvers from the execution tool

- Co-simulation: the model is shipped with the simulation libraries to be executed

This is the mode we have implemented in Scilab (only importing FMI 1.0).

The standard specifies the interfaces of the model as and XML file (see the parameters

in the next section), and the model executable as a binary file (DLL for instance):

<?xml version="1.0" encoding="ISO-8859-1" 7>
<fmiModelDescription fmiVersion="1.0" modeIName="bouncingBall" modelldentifier="bouncingBall"
guid="{8c4e810f-3df3-4a00-8276-176fa3c9f003}" numberOfContinuousStates="2"
numberOfEventindicators="1">
<ModelVariables>
<ScalarVariable name="h" valueReference="0" description="height">
<Real start="1" fixed="true" />

4 . Examplefmu </ScalarVariable>
4). binaries <ScalarVariable name="der(h)" valueReference="1" description="velocity*> <Real/>
- </ScalarVariable>
L linu32 <ScalarVariable name="y" valueReference="2" description="velocity “> <Real/>
- </ScalarVariable>
i linnd4 <ScalarVariable name="der(v)" valueReference="3" description="acceleration“> <Real/>
L) win32 </ScalarVariable>
| win64 <ScalarVariable name="g" valueReference="4" description="accel. gravity"
: variability="parameter">
I, documentation <Real start="0.81" fixed="true" />
|, resources <[ScalarVariable>
</ModelVariables>
iy sources </fmiModelDescription>

We can represent the XML Inputs & Outputs of the Functional Mock-up Unit as a graph:

Stator electrical power

1 —0O

Mechanical power

<

Rotational speed (rotor)

Rotor electrical power
Q D
Stator current

Magnetic pole:

L]

Current Rotor current

Smuasonx
@ x —_ Grid current

— Stator voltage

L

L]

[]

Rotor current after VS|

Aerodynamic torgue Rotor voltage

Voltage
@ D(OK Grid Voltage

Rotor voltage (after VSI)

:
8

.

g

3. Optimization in Scilab

There are two different ways engineers are interested to investigate when it comes about
optimization. First one is Design Space Exploration: The application was performing

simulations in loop in order to build response surface as displayed below.

Mean Torque

Simulation: () Single @ Loop
First End Step

Current (A) 20 30 2

Speed (rpm) 800 1200 100

350
250 nb turns

200

Mean Torque Response Surface built depending on speed (rpm) and number of turns

This way to proceed is pretty handy when it comes to system behavior understanding
but can also be used for “manual” optimization. Although it is not suited when dealing
with multiple objectives or when performing more simulations. In that case, we will have
to use specific heuristics needed to first formulate a composite objective and second limit

number of simulations runs needed to converge towards optimal solution.

Torque Map
Wiax Torg = 228 Nm Cost Function = Tarq x Efficiency bap Cost Functian = Torq x Inv Rippla Wap

@000

&000

7000

so00

5000

4000

3000

2000

Multi-objective optimization: Maximize torque and efficiency, minimize ripple
Dealing with models stored as Functional Mock-up Unit (FMU) allows to set-up an such
an automated process as it is providing all the information needed to set-up a classical

optimization problem:

e Cost functions (causality ‘output’in FMU syntax)

<ScalarVariable description="Mean Torque" variability="continuous" valueReference="805306394" name="T_mean.y" causality="output">
<Real unit="Nm" displayUnit="Nm" quantity="Torque"/>

</ScalarVariable>

<ScalarVariable description="Torque Ripple" variability="continuous" valueReference="805306395" name="ripple.y" causality="output">
<Real unit="Nm" displayUnit="Nm" quantity="Torque"/>

</Scalarvariable>

<ScalarVariable description="Electrical Power at Supply" variability="continuous" valueReference="805306396" name="Pel_mean.y"

causality="output">
<Real unit="Nm/s" displayUnit="kW" quantity="Power"/>

</ScalarVariable>

<ScalarVariable description="Mechanical Output Power" variability="continuous" valueReference="805306397" name="Pmech_mean.y"

causality="output">
<Real unit="Nm/s" displayUnit="kW" quantity="Power"/>

</ScalarVariable>

<ScalarVariable description="Efficiency" variability="continuous" valueReference="805306398" name="efficiency.y" causality="output">
<Real unit="-" displayUnit="%" quantity="RelMagnitude"/>

</ScalarVariable>

e Design parameters (variability ‘parameter’ in FMU syntax)

- <ScalarVariable description="Rotational Speed" variability="parameter" valueReference="1073741825" name="presetl.om">
<Real unit="rad/s" displayUnit="rpm" fixed="true" start="104.71975511965977" quantity="RotVelocity"/>
</ScalarVariable>

To finalize the set-up, we then need to define the goal to achieve (maximize or minimize)
regarding a specific objective (Efficiency, Ripple, Mean torque, ...), define the design

parameters lower and upper bounds to limit the design space, and specify the remaining

parameters mandatory for model simulation.

% Figuren®0 - X
Fichier
Cost functions Default parameters
threePhaseMotorMDdualCoil 1.T[3] signalVoltage L.v_src
threePhaseMotorMDdualCoil 1.RsMominal
Minimize T threePhaseMotorMDdualCoil 1.NTurns
threePhaseMotorMDdualCoil 1. NTurnsMonm
Maximize: effidency.y PO currentControl 1. phiRaise
Maximize: Pmech_mean.y currentContral 1. phiSlowDecay
Minimize: ripple.y currentControl 1. phioff
Maximize: T_mean.y v | |threePhaseMotorMDdualCoil 1.nPoles
Remave

Design parameters

threePhaseMotorNDdualCoil LNTu... ~ | | » 2
20 30 ‘ |2.443461 || Modify
Setup threePhaseMotorMDdualCoil 1. fleNamela

threePhaseMotorMDdualCoil 1. fileNameTo

currentControl 1. Iset (Min: 20 ; Max: 30)
presetl.om (Min: 800 ; Max: 1200)

Remove Append .dat

VALIDATE OPTIMIZE

|C: “Osershhag\Desktop\ESI\Scilab\Contribution\Stagiaire

The above GUI presents an optimization process set-up for FMU model. Once the case is
finally set-up, a multi-objective optimization can be run (with genetic algorithms), in

order to automatically build a pareto front of design solutions:

- -
I heore
_—1 e] e -
o s o
>—< A)
e g ° e o
- [Irade-off Line .
e® o
P e ® e
;
Design space - Objective space 1
© Paretosat Q Parstofront
@ DominantPoints P Inverse Ripple

4. Application development in Scilab

4.1. Optimization application
The project presented here aimed at providing an application for the customer to

optimize the parameters of the design. This application is highlighted here:

I Sciah 03 Comisie

=@z
Datei Editieren Steverung Amwendungen 7 Werkzeugbezen
ZFEACO Y S 29X ed
swtrommn v rx swonot o »ox e P rx
 Swated oo o> T
& : B Wy
oo II’ Loaa et
h-:m Zicad help
T # e SrEs |
B
i S rp—
i) ety
ooy [oo J— B
S J 1
- e 9 w
.
lowder w2 Gurent () £l . ‘
ot st on-me i B
Seech off - Doy (eg) R } ’
ko e | m| E
i we \ /kf
) /
| || o~ w . [T, K iy
— VvV v
ey

Mol s ol e 80

|

[

[soemeis || cmn ‘fu!na-l: S33m Tooe e 1241
3

[t

Poer: 85795

Design parameters

Posber Pl it
elage ()

ment 8l

St o - e gl
St of - i Deca (B
St of -t ol gl
Pt

Soeed (.

Tarcue mean: 2

|| Grsh ferectrrbug beschien | | Regulr exresmon

-> clmar slmlices clamcass

> amieyn_gut

BT mtacion tamm: 3,302

B -t s g
[——
SRaalove
[

=Er=]

[i e
preprre——
Smaalore
st

4.2. Cloud deployment
The following workflow highlights the 3 main steps towards the deployment of a system

application on the cloud:

System Model System App System Web App

SIMULALIoON X

o

=t

Sources:

Finite Element Method Magnetics : InductionMotorExample
David Meeker dmeeker@ieee.org August 20, 2004

http://[www.femm.info/wiki/InductionMotorExample

Electro-Magnetics with FEMM Finite Element Method Magnetics open-source software

https://www.scilab.org/electro-magnetics-femm

MODELISAR consortium: https://itea3.org/project/modelisar.html

Functional Mockup Interface (FMI) — General Standard for Model Exchange and
Simulator Coupling — Linképing University 2011-02-10 Peter Fritzson

Xcos FMU Wrapper on Scilab Forge: http:/forge.scilab.org/index.php/p/fmu-wrapper/

FMI toolbox in Scilab: https://www.scilab.org/software/atoms/fmi-model-exchange-co-

simulation

Tutorial on the development of a graphical user interface in Scilab:

http://scilab.io/how-to-develop-a-graphical-user-interface-tutorial/

Development of a Switched Reluctance Motor-based Electric AC Compressor Drive
Jaehyuck Kim et al. - Journal of Magnetics, Vol. 19, No. 3, September 2014

Matlab-Simulink® Coupling to Finite Element Software for Design and Analysis of
Electrical Machines — Gaizka Almandoz, Gaizka Ugalde, Javier Poza and Ana Julia
Escalada http://dx.doi.org/10.5772/46476

This work 1is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported

License.

mailto:dmeeker@ieee.org
mailto:dmeeker@ieee.org
http://www.femm.info/wiki/InductionMotorExample
http://www.femm.info/wiki/InductionMotorExample
https://www.scilab.org/electro-magnetics-femm
https://www.scilab.org/electro-magnetics-femm
https://itea3.org/project/modelisar.html
https://itea3.org/project/modelisar.html
http://forge.scilab.org/index.php/p/fmu-wrapper/
http://forge.scilab.org/index.php/p/fmu-wrapper/
https://www.scilab.org/software/atoms/fmi-model-exchange-co-simulation
https://www.scilab.org/software/atoms/fmi-model-exchange-co-simulation
https://www.scilab.org/software/atoms/fmi-model-exchange-co-simulation
https://www.scilab.org/software/atoms/fmi-model-exchange-co-simulation
http://scilab.io/how-to-develop-a-graphical-user-interface-tutorial/
http://scilab.io/how-to-develop-a-graphical-user-interface-tutorial/
http://dx.doi.org/10.5772/46476
http://dx.doi.org/10.5772/46476
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

