Machine learning classification - Logistic regression tutorial

Let's create some random data that are split into two different classes, ‘class 0’ and ‘class 1°.
We will use these data as a training set for logistic regression.

10 ><><
i 5 b4
o
b4
(4] }:E{ x *
b4 b4
8 o Mg
| Xo
3k o }{>S<
G] }55{ W
L o . X Ko
g a 0 = o X
% b4
[[+ o
4 [} o Q0 KO =
1 o & x h 4
< 1A o R bt
4] a 0 }{}{
o o o]
2 o o
2 o 0
. ¥ o L+ o WX
1
o0 o
%, o
y 0 o ﬁn::- & ¥
I I | I : I | I I H |
1] 1 2 3 4 5 G 7 =] a 10

Import your data

This dataset represents 100 samples classified in two classes as 0 or 1 (stored in the third
column), according to two parameters (stored in the first and second column):

data_classification.csv

Directly import your data in Scilab with the following command:
t=csvRead();

These data has been generated randomly by Scilab with the following script:

b0 = 10;
t = b0 * rand(100,2);
t = [t 0.5+0.5*sign(t(:,2)+t(:,1)-b0)];

http://scilab.io/machine-learning-logistic-regression-tutorial/

b=1;

flip = find(abs(t(:,2)+t(:,1)-b0)<b);

t(flip,$)=grand(length(t(flip,$)),1, ,0,1);

The data from different classes overlap slightly. The degree of overlapping is controlled by
the parameter b in the code.

Represent your data

Before representing your data, you need to split them into two classes t0 and t1 as followed:

t0 = t(find(t(:,$)==0),");
t1 = t(find(t(:,$)==1),’);

Then simply plot them:

Build a classification model

We want to build a classification model that estimates the probability that a new, incoming
data belong to the class 1.

First, we separate the data into features and results:

X:t(1 ');y:t(v)a
[m, n] = size(x);

Then, we add the intercept column to the feature matrix

// Add intercept term to x
x = [ones(m, 1) X];

The logistic regression hypothesis is defined as:
h(6, x) =1/ (1 +exp(-9x))

It's value is the probability that the data with the features x belong to the class 1.

The Cost Function in logistic regression is

J = [~y log(h) = (1-y)" log(1-h)J/m
where log is the “element-wise” logarithm, not a matrix logarithm.

https://www.coursera.org/learn/machine-learning/lecture/RJXfB/hypothesis-representation
https://www.coursera.org/learn/machine-learning/lecture/1XG8G/cost-function

Gradient descent

If we use the gradient descent algorithm, then the update rule for the 8 is
6—-60-aVd=0-ax"(h-y)/m
The code is as follows:

// Initialize fitting parameters
theta = zeros(n + 1, 1);

// Learning rate and number of iterations

a=0.01;
n_iter = 10000;

for iter = 1:n_iter do

z = x * theta;

h = ones(z) ./ (1+exp(-2));

theta = theta - a * x' *(h-y) / m;

J(iter) = (-y' * log(h) - (1-y)' * log(1-h))/m
end

Visualize the results

Now, the classification can be visualized:

// Display the result
disp(theta)

u = linspace(min(x(:,2)),max(x(:,2)));

clf(1);scf(1);
plot(t0(:,1),10(:,2),'bo’)
plot(t1(:,1),t1(:,2),'rx)
plot(u,-(theta(1)+theta(2)*u)/theta(3),"-g")

Convergence of the model
The graph of the cost at each iteration is:
// Plot the convergence graph
clf(2);scf(2);

plot(1:n_iter, J');
xtitle(: :)

Convergence
07

0.65 o

0.6 o

055

0.5+

Cost

0.45 —

0.4

0.35 4

0.3 4

025 — o T ¥ T g T 1 . T ; T g T L
0 1000 2000 3000 4000 S000 G000 7FOOOD 2000 9000 10000

Iterations

Credits/licence:

Article kindly contributed by Viad Gladkikh (Copyright owner)
Layout by Yann Debray @ Scilab

More resources:

MOOC on Cousera about Machine Learning from Andrew Ng, Stanford University
https://www.coursera.org/learn/machine-learning/home/welcome

Full script : http://www.holehouse.org/mlclass/06_Logistic_Regression.html

https://burubaxair.wordpress.com/2015/08/04/logistic-regression-in-scilab/
https://www.coursera.org/learn/machine-learning/home/welcome
https://www.coursera.org/learn/machine-learning/home/welcome
http://www.holehouse.org/mlclass/06_Logistic_Regression.html

