Let's create some random data that are split into two different classes, 'class 0' and 'class 1'. We will use these data as a training set for logistic regression.

Import your data

This dataset represents 100 samples classified in two classes as 0 or 1 (stored in the third column), according to two parameters (stored in the first and second column):

data_classification.csv

Directly import your data in Scilab with the following command:

t = csvRead("data_classification.csv");

These data has been generated randomly by Scilab with the following script:

\[
b0 = 10; \\
t = b0 * rand(100,2); \\
t = [t 0.5+0.5*sign(t(:,2)+t(:,1)-b0)];
\]
b = 1;
flip = find(abs(t(:,2)+t(:,1)-b0)<b);
t(flip,$)=grand(length(t(flip,$)),1,"uin",0,1);

The data from different classes overlap slightly. The degree of overlapping is controlled by the parameter b in the code.

Represent your data
Before representing your data, you need to split them into two classes t0 and t1 as followed:

\[t_0 = t(\text{find}(t(:,$)==0,:)); \]
\[t_1 = t(\text{find}(t(:,$)==1,:)); \]

Then simply plot them:

\[
\text{clf}(0);\text{scf}(0);
\text{plot}(t_0(:,1),t_0(:,2),'bo')
\text{plot}(t_1(:,1),t_1(:,2),'rx')
\]

Build a classification model
We want to build a classification model that estimates the probability that a new, incoming data belong to the class 1.

First, we separate the data into features and results:

\[x = t(:,1:$$-1); y = t(:,$); \]
\[[m, n] = \text{size}(x); \]

Then, we add the intercept column to the feature matrix

// Add intercept term to x
x = [ones(m, 1) x];

The logistic regression hypothesis is defined as:

\[h(\theta, x) = 1 / (1 + e^{\theta^T x}) \]

It’s value is the probability that the data with the features x belong to the class 1.

The Cost Function in logistic regression is

\[J = [-y^T \log(h) - (1-y)^T \log(1-h)]/m \]

where \(\log \) is the “element-wise” logarithm, not a matrix logarithm.
Gradient descent

If we use the gradient descent algorithm, then the update rule for the θ is

$$\theta \rightarrow \theta - \alpha \nabla J = \theta - \alpha x^T (h - y) / m$$

The code is as follows:

```matlab
// Initialize fitting parameters
theta = zeros(n + 1, 1);

// Learning rate and number of iterations
a = 0.01;
n_iter = 10000;

for iter = 1:n_iter do
    z = x * theta;
    h = ones(z) ./ (1 + exp(-z));
    theta = theta - a * x' * (h - y) / m;
    J(iter) = (-y' * log(h) - (1-y') * log(1-h))/m;
end

Visualize the results

Now, the classification can be visualized:

```
Convergence of the model

The graph of the cost at each iteration is:

```plaintext
// Plot the convergence graph
clf(2); scf(2);
plot(1:n_iter, J);
xtitle('Convergence', 'Iterations', 'Cost')
```

Credits/licence:

Article kindly contributed by Vlad Gladkikh (Copyright owner)
Layout by Yann Debray @ Scilab

More resources:

MOOC on Coursera about Machine Learning from Andrew Ng, Stanford University
https://www.coursera.org/learn/machine-learning/home/welcome

Full script: http://www.holehouse.org/mlclass/06_Logistic_Regression.html