
Optimization in Scilab

Scilab provides a high-level matrix

language and allows to define complex

mathematical models and to easily connect

to existing libraries. That is why

optimization is an important and practical

topic in Scilab, which provides tools to

solve linear and nonlinear optimization

problems by a large collection of tools.

Overview of the industrial-grade solvers available in Scilab

and the type of optimization problems which can be solved by Scilab.

For the constraint columns, the letter "l" means linear, the letter "n" means nonlinear and "l*" means linear constraints in spectral sense.

For the problem size column, the letters "s", "m" and "l" respectively mean small, medium and large.

Objective Bounds Equality Inequalities Problem size Gradient needed Solver

Linear y l l m - linpro

Quadratic y l l
m -

quapro

qld

l - qpsolve

Nonlinear

y

l y optim

s n
neldermead

optim_ga

s n
fminsearch

optim_sa

Nonlinear

Least Squares
l optional

lsqrsolve

leastsq

Min-Max y m y optim/"nd"

Multi-Obj. y
s

n
optim_moga

l* l semidef

Semi-Def. l* l* l n lmisolve

Scilab Datasheet

Focus on nonlinear optimization

w The optim function solves optimization problems with

nonlinear objectives, with or without bound constraints on the

unknowns. The quasi-Newton method optim/"qn" uses a

Broyden-Fletcher-Goldfarb-Shanno formula to update the

approximate Hessian matrix. The quasi-Newton method has a

O(n²) memory requirement. The limited memory BFGS

algorithm optim/"gc" is efficient for large size problems due

to its memory requirement in O(n). Finally, the optim/"nd"

algorithm is a bundle method which may be used to solve

unconstrained, non-differentiable problems. For all these

solvers, a function that computes the gradient g must be

provided. That gradient can be computed using finite differences

based on an optimal step with the derivative function, for

example.

w The fminsearch function is based on the simplex algorithm

of Nelder and Mead (not to be confused with Dantzig’s simplex

for linear optimization). This unconstrained algorithm does not

require the gradient of the cost function. It is efficient for small

problems, i.e. up to 10 parameters and its memory requirement

is only O(n2). It generally requires only 1 or 2 function

evaluations per iteration. This algorithm is known to be able to

manage "noisy" functions, i.e. situations where the cost function

is the sum of a general nonlinear function and a low magnitude

noise function. The neldermead component provides three

simplex-based algorithms which allow to solve unconstrained

and nonlinearly constrained optimization problems. It provides

an object oriented access to the options. The fminsearch

function is, in fact, a specialized use of the neldermead

component.

The flagship of Scilab is certainly the optim function, which

provides a set of 5 algorithms for nonlinear unconstrained (and

bound constrained) optimization problems.

Figure 1: Optimization of the Rosenbrock function by the

optim function.

The optim function is an unconstrained (or bound constrained)

nonlinear optimization solver. The calling sequence is:

fopt = optim(costf,x0)

fopt = optim(costf,"b",lb,ub,x0)

fopt = optim(costf,"b",lb,ub,x0,algo)

[fopt,xopt] = optim(...)

[fopt,xopt,gopt] = optim(...)

where

w f is the objective function,

w x0 is the initial guess,

w lb is the lower bound,

w ub is the upper bound,

w algo is the algorithm,

w fopt is the minimum function value,

w xopt is the optimal point,

w gopt is the optimal gradient.

The optim function allows to use 3 different algorithms:

w algo = "qn": Quasi-Newton (the default solver) based on BFGS

formula,

w algo = "gc": Limited Memory BFGS algorithm for large-scale

optimization,

w algo = "nd": Bundle method for non-differentiable problems

(e.g. min-max).

Features:

w Provides efficient optimization solvers based on robust

algorithms.

w Objective function f in Scilab macros or external (dynamic

link).

w Extra parameters can be passed to the objective function (with

a list or array).

w Robust implementation:

- Quasi-Newton based on the update of the Cholesky

factors,

- Line-Search of optim/"qn" based on a safeguarded

cubic interpolation designed by Lemaréchal.

In the following script, we compute the unconstrained optimum

of the Rosenbrock function:

function [f, g, ind]=rosenbrock(x, ind)

f = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2

g(1) = - 400*(x(2)-x(1)^2)*x(1) - 2*(1-x(1))

g(2) = 200*(x(2)-x(1)^2)

endfunction

x0 = [-1.2 1.0];

[fopt , xopt] = optim (rosenbrock , x0)

The previous script produces the following output:

-->[fopt , xopt] = optim (rosenbrock , x0)

xopt =

1. 1.

fopt =

0.

Computing the derivatives by finite

differences

Scilab provides the derivative function which computes

approximate gradients based on finite differences. The calling

sequence is:

g = derivative(f,x)

g = derivative(f,x,h)

g = derivative(f,x,h,order)

[g,H] = derivative(...)

where

w f is the objective function,

w x is the point where to evaluate the gradient,

w h is the step,

w order is the order of the finite difference formula,

w g is the gradient (or Jacobian matrix),

w H is the Hessian matrix.

Features:

w Uses optimal step (manages limited precision of floating point

numbers),

w Can handle any type of objective function: macro or external

program or library,

w Provides order 1, 2 or 4 formulas.

In the following script, we compute the optimum of the

Rosenbrock problem with finite differences:

function f=rosenbrock(x)

f = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2

endfunction

function [f, g, ind]=rosenbrockCost2(x, ind)

f = rosenbrockF(x)

g = derivative(rosenbrockF, x', order=4)

endfunction

Figure 2: Pattern of the order 1, 2 and 4 finite differences

formulas in the derivative function.

Linear and Quadratic Optimization

The Quapro module defines linear quadratic programming

solvers. The matrices defining the cost and constraints must be

full, but the quadratic term matrix is not required to be full rank.

Features:

w linpro: Linear programming solver,

w quapro: Linear quadratic programming solver,

w mps2linpro: Convert lp problem given in MPS format to

linpro format.

Gradient - Evaluation points - Order 1

X1-1

X
2-

1

Gradient - Evaluation points - Order 2

X1-1

X
2-

1

Gradient - Evaluation points - Order 4

X1-1

X
2-

1

The Quapro module is available through ATOMS:

http://atoms.scilab.org/toolboxes/quapro

To install the Quapro module:

atomsInstall("quapro");

and then re-start Scilab.

The linpro function can solve linear programs in general form:

Minimize c'*x

A*x <= b

Aeq*x = beq

lb <= x <= ub

The following example is extracted from "Operations Research:

applications and algorithms", Wayne L. Winstons, Section 5.2,

"The Computer and Sensitivity Analysis", in the "Degeneracy

and Sensitivity Analysis" subsection. We consider the problem:

Min -6*x1 - 4*x2 - 3*x3 - 2*x4

such that:

2*x1 + 3*x2 + x3 + 2* x4 <= 400

x1 + x2 + 2*x3 + x4 <= 150

2*x1 + x2 + x3 + 0.5*x4 <= 200

3*x1 + x2 + x4 <= 250;

x >= 0;

The following script allows to solve the problem:

c = [-6 -4 -3 -2]';

A = [

2 3 1 2

1 1 2 1

2 1 1 0.5

3 1 0 1

];

b = [400 150 200 250]';

ci=[0 0 0 0]';

cs=[%inf %inf %inf %inf]';

[xopt,lagr,fopt]=linpro(c,A,b,ci,cs)

This produces:

xopt = [50,100,2.842D-14,0]

Nonlinear Least Squares

Scilab provides 2 solvers for nonlinear least squares:

w lsqrsolve: Solves nonlinear least squares problems,

Levenberg-Marquardt algorithm,

w leastsq: Solves nonlinear least squares problems (built over

optim).

Features:

w Can handle any type of objective function, macro or external

program or library,

w The gradient is optional.

In the following example, we are searching for the parameters

of a system of ordinary differential equations which best fit

experimental data. The context is a chemical reaction for

processing waters with phenolic compounds.

We use the lsqrsolve function in a practical case:

function dy = myModel(t,y,a,b)

// The right-hand side of the

// Ordinary Differential Equation.

dy(1) = -a*y(2)+y(1)+t^2+6*t+b

dy(2) = b*y(1)-a*y(2)+4*t+(a+b)*(1-t^2)

endfunction

function f = myDifferences(x,t,yexp)

// Returns the difference between the

// simulated differential

// equation and the experimental data.

a = x(1)

b = x(2)

y0 = yexp(1,:)

t0 = 0

y_calc=ode(y0',t0,t,list(myModel,a,b))

diffmat = y_calc' - yexp

// Maxe a column vector

f = diffmat(:)

endfunction

function f = myAdapter(x,m,t,yexp)

// Adapts the header for lsqrsolve

f = myDifferences(x,t,yexp)

endfunction

// 1. Experimental data

t = [0 1 2 3 4 5 6]';

yexp(:,1) = [-1 2 11 26 47 74 107]';

yexp(:,2) = [1 3 09 19 33 51 73]';

// 2. Optimize

x0 = [0.1;0.4];

y0 = myDifferences(x0,t,yexp);

m = size(y0,"*");

objfun = list(myAdapter,t,yexp);

[xopt,diffopt]=lsqrsolve(x0,objfun,m)

The previous script produces the following output:

-->[xopt,diffopt]=lsqrsolve(x0,objfun,m)

lsqrsolve: relative error between two consecutive

iterates is at most xtol.

http://atoms.scilab.org/toolboxes/quapro

diffopt =

0.

- 2.195D-08

- 4.880D-08

- 8.743D-09

2.539D-08

7.487D-09

- 2.196D-08

0.

6.534D-08

- 6.167D-08

- 7.148D-08

- 6.018D-09

2.043D-08

1.671D-08

xopt =

2.

3.

Figure 3: Searching for the best parameters fitting

experiments data associated with a set of 2 Ordinary

Differential Equations.

Genetic Algorithms

The genetic algorithms module in Scilab provides the following

functions:

w optim_ga: A flexible genetic algorithm,

w optim_moga: A multi-objective genetic algorithm,

w optim_nsga: A multi-objective Niched Sharing Genetic

Algorithm,

w optim_nsga2: A multi-objective Niched Sharing Genetic

Algorithm version 2.

The following example is the minimization of the Rastrigin

function defined by y = x1
2 + x2²- cos (12 x1) -cos (18 x2). This

function has several local minima, but only one global minimum,

that is (x1*,x2*) = (0, 0) associated with the value

f (x1*, x2*) = - 2. We use a binary encoding of the input

variables, which performs better in this case:

// 1. Define the Rastrigin function.

function y = rastriginV(x1,x2)

// Vectorized function for contouring

y = x1.^2 + x2.^2-cos(12*x1)-cos(18*x2)

endfunction

function y = rastrigin(x)

// Non-vectorized function for optimization

y = rastriginV(x(1),x(2))

endfunction

function y = rastriginBinary(x)

BinLen = 8

lb = [-1;-1];

ub = [1;1];

tmp = convert_to_float(x,BinLen,ub,lb)

y = rastrigin (tmp)

endfunction

// 2. Compute the optimum.

PopSize = 100;

Proba_cross = 0.7;

Proba_mut = 0.1;

NbGen = 10;

Log = %T;

gaprms=init_param();

gaprms=add_param(gaprms,"minbound",[-1;-1]);

gaprms=add_param(gaprms,"maxbound",[1;1]);

gaprms=add_param(gaprms,"dimension",2);

gaprms=add_param(gaprms,"binary_length",8);

gaprms=add_param(gaprms,"crossover_func",..

crossover_ga_binary);

ODE
Data

-500

0

500

1000

1500

2000

2500

0 1 2 3 4 5 6

Before Optimization

t

Y
1

ODE
Data

0

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5 6

Before Optimization

t

Y
2

ODE
Data

-20

0

20

40

60

80

100

120

0 1 2 3 4 5 6

After Optimization

t

Y
1

ODE
Data

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

After Optimization

Y
2

gaprms=add_param(gaprms,"mutation_func",..

mutation_ga_binary);

gaprms=add_param(gaprms,"codage_func",..

coding_ga_binary);

gaprms=add_param(gaprms,"multi_cross",%T);

[xpopopt,fpopopt,xpop0,fpop0] = ..

optim_ga(rastriginBinary,PopSize,..

NbGen,Proba_mut,Proba_cross,Log,gaprms);

The previous script produces the following output:

-->[pop_opt,fobj_pop_opt,pop_init,fobj_pop_init] =

optim_ga(rastriginBinary, ..

--> PopSize, NbGen, Proba_mut, Proba_cross, Log,

ga_params);

Initialization of the population

Iter. 1 - min/max value = -1.942974/0.085538

Iter. 2 - min/max value = -1.942974/-0.492852

Iter. 3 - min/max value = -1.942974/-0.753347

Iter. 4 - min/max value = -1.942974/-0.841115

Iter. 5 - min/max value = -1.942974/-0.985001

Iter. 6 - min/max value = -1.942974/-1.094454

Iter. 7 - min/max value = -1.942974/-1.170877

Iter. 8 - min/max value = -1.987407/-1.255388

Iter. 9 - min/max value = -1.987407/-1.333186

Iter. 10 - min/max value = -1.987407/-1.450980

Figure 4: Optimization of the Rastrigin function

by the optim_ga function.

Open-Source libraries

w optim is based on Modulopt, a collection of optimization

solvers.

http://www-rocq.inria.fr/~gilbert/modulopt/

w lsqrsolve is based on Minpack, a Fortran 77 code for

solving nonlinear equations and nonlinear least squares

problems.

http://www.netlib.org/minpack/

w Quapro: Eduardo Casas Renteria, Cecilia Pola Mendez

(Universidad De Cantabria), improved by Serge Steer (INRIA)

and maintained by Allan Cornet, Michaël Baudin (Consortium

Scilab - Digiteo).

w qld: Designed by M.J.D. Powell (1983) and modied by K.

Schittkowski, with minor modications by A. Tits and J.L. Zhou.

w qp_solve, qpsolve: The Goldfarb-Idnani algorithm and the

Quadprog package developed by Berwin A. Turlach.

w linpro, quapro: The algorithm developed by Eduardo

Casas Renteria and Cecilia Pola Mendez.

w Thanks to Marcio Barbalho for providing the material of the

Non Linear Least Squares example.

w All scripts are available on Scilab wiki at:

http://wiki.scilab.org/Scilab%20Optimization%20Datasheet

Scilab Datasheet, updated in September 2011.

http://www-rocq.inria.fr/~gilbert/modulopt/
http://www.netlib.org/minpack/
http://wiki.scilab.org/Scilab%20Optimization%20Datasheet

