1. Express the physics problem

The problem is based on the universal law of gravitation:

\[\vec{F} = -G \frac{m \cdot M}{||\vec{r}||^2} \cdot \frac{\vec{r}}{||\vec{r}||} \]

We write down Newton’s third law of motion in an earth-centred referential:

\[m \cdot \ddot{x} = -G \frac{m \cdot M}{(\sqrt{x^2+y^2})^3} \cdot x \]
\[m \cdot \ddot{y} = -G \frac{m \cdot M}{(\sqrt{x^2+y^2})^3} \cdot y \]

Position of the satellite is at a distance \(r \) \([x; y]\)
Earth mass centre is at \(O [0; 0] \)
Constants of the problem:
Gravitational constant $G = 6.67 \times 10^{-11} \, m^3 kg^{-1} s^{-2}$
Mass of the earth $M = 5.98 \times 10^{24} \, kg$
Radius of the Earth $r_{earth} = 6.38 \times 10^6 \, m$

2. Translate your problem into Scilab

Scilab is a matrix-based language. Instead of expressing the system as set of 4 independent equations (along the x and y axis, for position and speed), we describe it as a single matrix equation, of dimension 4x4:

This method is a classical trick to switch from a second order scalar differential equation to a first order matrix differential equation.

$$ u = A \cdot u $$

with $A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \frac{c}{r^3} & 0 & 0 & 0 \\ 0 & \frac{c}{r^3} & 0 & 0 \end{bmatrix}$

To simplify the equation, we define the variable $c = -G * M$

Open `scinotes` with edit `myEarthRotation.sci`
Define the skeleton of the function:

```scilab
function udot = f(t, u)
G = 6.67D-11; //Gravitational constant
M = 5.98D24; //Mass of the Earth
C = -G * M;
r_earth = 6.378E6; //radius of the Earth
r = sqrt(u(1)^2 + u(2)^2);
//Write the relationhsip between udot and u
if r < r_earth then
    udot = [0 0 0 0];
else
    A = [[0 0 1 0];
    [0 0 0 1];
    [c/r^3 0 0 0];
    [0 c/r^3 0 0]];
    udot = A*u;
end
endfunction
```

The condition defined by the distance r of the satellite with the centre of earth stops the simulation if it’s colliding with earth’s surface.
Try out the final script with the following initial conditions in speed and altitude:

- $geo_{alt} = 35784$; // in kms
- $geo_{speed} = 1074$; // in m/s
- $simulation_{time} = 24$; // in hours

$U = earthrotation(geo_{alt}, geo_{speed}, simulation_{time})$;

3. Compute the results and create a visual animation

With this function, we go to the core of the problem.

```markdown
function U = earthrotation(altitude, v_init, hours)
// altitude given in km
// v_init is a vector [vx; vy] given in m/s
// hours is the number of hours for the simulation
r_earth = 6.378E6;
alitude = altitude * 1000;
U0 = [r_earth + altitude; 0; 0; v_init];
t = 0:10*(3600*hours); // simulation time, one point every 10 seconds
U = ode(U0, 0, t, f);

// Draw the earth in blue
angle = 0:0.01:2*%pi;
x_earth = 6378 * cos(angle);
y_earth = 6378 * sin(angle);
fig = scf();
a = gca();
a.isoview = "on";
plot(x_earth, y_earth, 'b--');
plot(0, 0, 'b+');
// Draw the trajectory computed
comet(U(1,:), U(2,:), "colors", 3);
endfunction
```

The resolution of the ordinary differential equation (ODE) is computed with the Scilab function `ode`.
ode solves Ordinary Different Equations defined by:

\[y' = f(t, y) \]

where \(y \) is a real vector or matrix

The simplest call of ode is: \(y = \text{ode}(y0,t0,t,f) \) where \(y0 \) is the vector of initial conditions, \(t0 \) is the initial time, \(t \) is the vector of times at which the solution \(y \) is computed and \(y \) is matrix of solution vectors \(y=[y(t(1)),y(t(2)),\ldots] \).

To go further in numerical analysis, find out more about the solvers: Ordinary Differential Equations with Scilab, WATS Lectures, Université de Saint-Louis, G. Sallet, 2004

Complete script

```plaintext
// Scilab (http://www.scilab.org/) - This file is part of Scilab
// Copyright (C) Copyright (C) 2015-2015 - Scilab Enterprises - Pierre-Aimé Agnel
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2.1-en.txt

function udot=f(t, u)
    G = 6.67D-11; //Gravitational constant
    M = 5.98D24; //Mass of the Earth
    c = -G * M;
    r_earth = 6.378E6; //radius of the Earth
    r = sqrt(u(1)^2 + u(2)^2); // Write the relationship between udot and u
    if r < r_earth then
        udot = [0 0 0 0];
    else
        A = [0 0 1 0; 0 0 0 1; c/r^3 0 0 0; 0 c/r^3 0 0];
        udot = A*u;
    end
endfunction

function U=earthrotation(alternate, v_init, hours)
    // altitude given in km
    // v_init is a vector [vx; vy] given in m/s
    // hours is the number of hours for the simulation
    r_earth = 6.378E6;
    altitude = altitude * 1000;
    U0 = [r_earth + altitude; 0; 0; v_init];
    t = 0.1*(3600*hours); // simulation time, one point every 10 seconds
    U = ode(U0, 0, t, f);
```

// Draw the earth in blue
angle = 0:0.01:2*pi;
x_earth = 6378 * cos(angle);
y_earth = 6378 * sin(angle);
fig = scf();
a = gca();
a.isoview = "on";
plot(x_earth, y_earth, 'b-');
plot(0, 0, 'b+');
// Draw the trajectory computed
comet(U(1,:), U(2,:), "colors", 3);
endfunction

//Earth Rotation at geostationnary orbit
geo_alt = 35784; // in kms
geo_speed = 3074; // in m/s
simulation_time = 24; // in hours
U = earthrotation(geo_alt, geo_speed, simulation_time);