Scilab tutorial — satellite
orbit around the earth

1. Express the physics problem

The problem is based on the universal law of gravitation:

m«M r

ﬁ = —0G*—=—>*——=—
72 Izl

We write down Newton'’s third law of motion in an earth-centred referential:

mxM

mrk= —Gr ey X 1)
. mxM
m+*y= —@G* ———% 2
y Tz Y (2)
A
y

50 000

40 000 -

30 000 \
20 000 - r
10 000) ‘[[%

N [
0 \] >
1 —

-10 000

-20 000

-30 000

-40 000

-50 000 T T T T T T T T T

-40 000 -20 000 0 20 000 40 000

Position of the satellite is at a distance r [x; y]
Earth mass centre is at O [0; 0]

Constants of the problem:

Gravitational constant G = 6.67 X 10711 m3kg=1s72
Mass of the earth M = 5.98 x 10%* kg

Radius of the Earth r, 4,4, = 6.38 X 10°m

2. Translate your problem into Scilab

Scilab is a matrix-based language. Instead of expressing the system as set of 4
independent equations (along the x and y axis, for position and speed), we describe it as
a single matrix equation, of dimension 4x4:

This method is a classical trick to switch from a second order scalar differential equation
to a first order matrix differential equation.

u =A4Au
0 0 1 0 X
_ _ 0o 0 1] [¥
withd=1cp3 o0 0 o= |x
0 ¢/ 0 0 y
To simplify the equation, we define the variablec = —G * M

Open scinotes with edit myEarthRotation.sci
Define the skeleton of the function:

function udot=f(t, u)

G= ; //Gravitational constant
M= ; //Mass of the Earth
c=-G*M;

r_earth = ; //radius of the Earth

1= sqrt(u(1)"2 + u(2)"2);
Write the relationhsip between udot and u
if r <r_earth then

udot = [1
else
A=][1
[I
[e/t? 5
[0 ert 11
udot = A*u;
end
endfunction

The condition defined by the distance r of the satellite with the centre of earth stops the
simulation if it’s colliding with earth’s surface.

10 000 - o —
5 000 TN
/ AN |
i f \ "-,l
0] | + |)
Y ,’
- \ /
. 1 . T b 1 = 1 = 1
-10 000 0 10 000 20 000 30 000 40 000

Try out the final script with the following initial conditions in speed and altitude:
geo_alt=35784; //in kms
geo_speed = 10745 //in m/s
simulation_time = 24; // in hours
U = earthrotation(geo_alt, geo_speed, simulation_time);

3. Compute the results and create a visual animation

With this function, we go to the core of the problem.

function U=earthrotation(altitude, v_init, hours)
// altitude given in km
//v_init is a vector [vx; vy] given in m/s
// hours is the number of hours for the simulation
r_earth = 6.378E6;
altitude = altitude * 1000;
UO = [r_earth + altitude; 0; 0; v_init];
t=0:10:(3600*hours); // simulation time, one point every 10 seconds

U = ode(UO0, 0, t, f);

// Draw the earth in blue
angle = 0:0.01:2*%pi;
x_earth = 6378 * cos(angle);
y_earth = 6378 * sin(angle);

fig = scf();
a = gea();
a ="on";

plot(x_earth, y_earth, 'b--");
plot(0, 0, 'b+");
// Draw the trajectory computed
comet(U(1,:)/1000, U(2,:)/1000, "colors", 3);
endfunction

The resolution of the ordinary differential equation (ODE) is computed with the Scilab
function ode.

ode solves Ordinary Different Equations defined by:

y =fty)
where y is a real vector or matrix

The simplest call of ode is: y = ode(y0,t0,t,f) where y0 is the vector of initial
conditions, t0 is the initial time, t is the vector of times at which the solution y is
computed and y is matrix of solution vectors y=[y(t(1)),y(t(2)),...].

To go further in numerical analysis, find out more about the solvers:
Ordinary Differential Equations with Scilab, WATS Lectures, Université de Saint-Louis,
G. Sallet, 2004

Complete script

/

// Scilab (http://'www.scilab.org/) - This file is part of Scilab

// Copyright (C) 2015-2015 - Scilab Enterprises - Pierre-Aime Agnel
/"

// This file must be used under the terms of the CeCILL.

// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms

// are also available at

// http.://www.cecill.info/licences/Licence_CeCILL V2.1-en.txt

/"

function udot=f(t, u)
G = 6.67D-11; //Gravitational constant
M = 5.98D24; //Mass of the Earth
c=-G*M;
r_earth = 6.378E6; //radius of the Earth
r=sqrt(u()2 + u(2)"2);
// Write the relationhsip between udot and u
if r <r_earth then
udot=1[000 07}
else
A=[[0 0 10]
[0 0 017
[e/rr30 00];
[0 cA*300]];
udot = A*u;
end
endfunction

function U=earthrotation(altitude, v_init, hours)
// altitude given in km
//v_init is a vector [vx, vy] given in m/s
// hours is the number of hours for the simulation
r_earth = 6.378L06;
altitude = altitude * 1000;
UO = [r_earth + altitude; 0; 0; v_init];
t=0:10:(3600*hours); // simulation time, one point every 10 seconds

U = ode(U0, 0, t, f);

// Draw the earth in blue

angle = 0:0.01:2*%pi;

x_earth = 6378 * cos(angle);

y_earth = 6378 * sin(angle);

fig = scf();

a = gea();

a.isoview = "on";

plot(x_earth, y earth, 'b--');

plot(0, 0, 'b+");

// Draw the trajectory computed

comet(U(1,:)/1000, U(2,:)/1000, "colors", 3);
endfunction

//Earth Rotation at geostationnary orbit
geo_alt=235784; //in kms

geo_speed = 3074; //in m/s

simulation_time = 24; // in hours

U = earthrotation(geo_alt, geo_speed, simulation_time);

