

get it right®

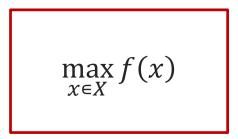
SCILAB TEAM 17th, October 2019

Advanced post-processing

Airfoil shape optimization

Quick introduction to Numerical Optimization

Optimization problem

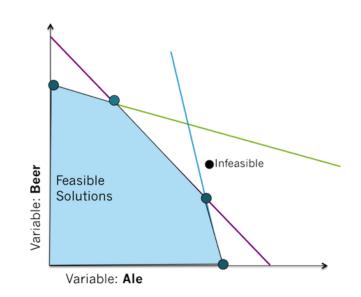


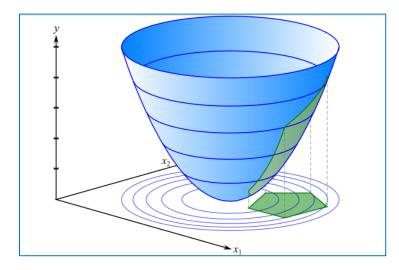
3 Steps:

1/ Identification of the decision variables: x

2/ Set-up of constraints associated to the variables: X

3/ Definition of a cost/objective function: f





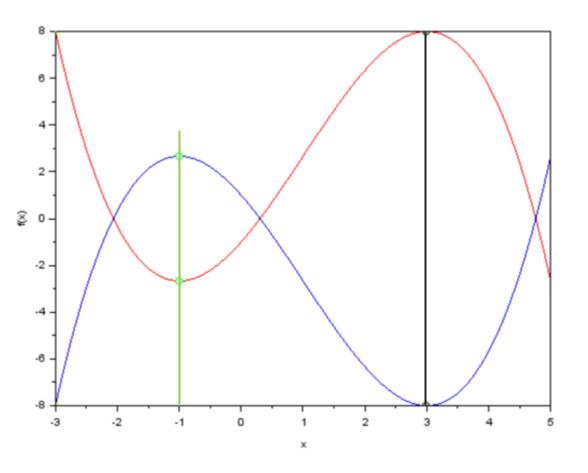
www.esi-group.com

Two formulations, One problem

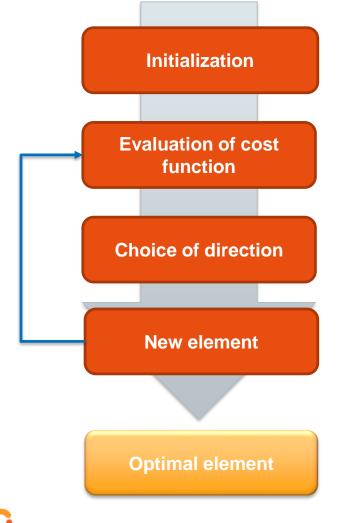
Minimize or Maximize a function?

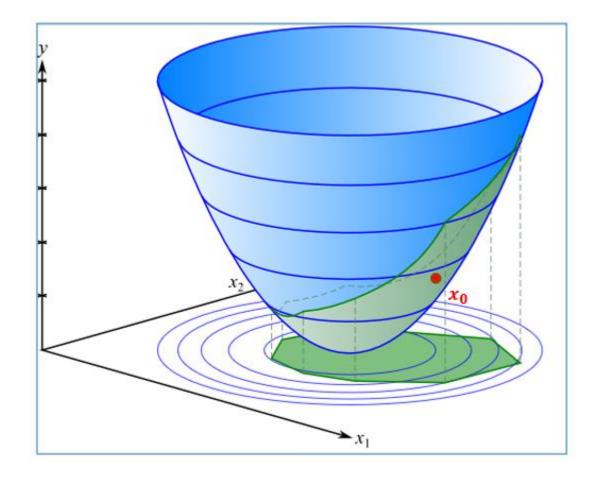
Solving the problem $\min_{x \in X} f(x)$ Corresponds to solve the problem

 $\max_{x \in X} -f(x)$



Numerical optimization





Classical set-up parameters for optimization solvers

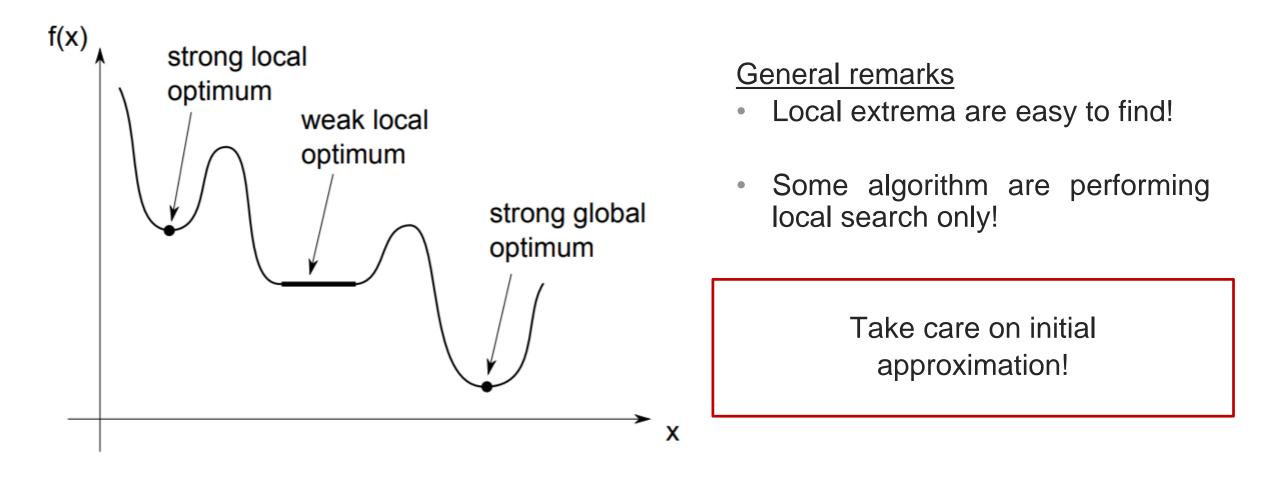
- 1/ Initial approximation Influence convergence2/ Number of iterations Recursive process
- 3/ Convergence speed
- 4/ Stopping criteria
- Maximum number of iterations, ...
- Cost function value under a given threshold, ...

 $\|f(x_n)\| < \varepsilon_1$

 Difference between two consecutive approximations under a given threshold, ...

$$\|x_{n+1} - x_n\| < \varepsilon_2$$

WARNING : Different types of extrema



Maximum search methods

How to make design space exploration?

Direct search

Search for an optimal position using cost function evaluations, without any computation of the function exact or approximate derivatives.

Interior Points method, simplex

Derivatives computation

Search for an optimal position using cost function derivatives (Jacobian for steepest ascent direction, Hessian for critical point type) exact or approximate computation.

Gradient method, Newton method

Optimization problem typology

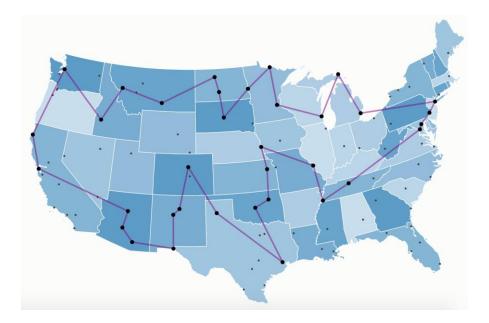
Copyright © ESI Group, 2017. All rights reserved.

Continuous vs Discrete

DISCRETE (Combinatorial Analysis)

Variables are taking values in a finite set or states (IN, ON/OFF, ...).

Classical examples: Travelling salesman problem which consists in finding the shortest path binding a given set of cities.



Travelling salesman problem

Mono vs Multi objective

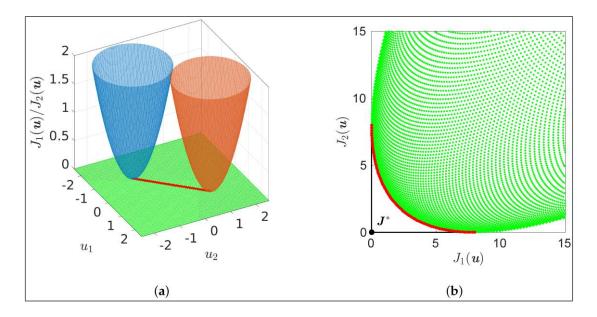
MULTI OBJECTIVE

```
\min_{x \in X} (f_1(x), f_2(x), \dots, f_k(x))
```

Several cost, potentially conflicting, functions minimization.

Found solution is therefore not unique. The complete set of solutions is called *Pareto* Front.

Choice is about trade-off



An example would be to ensure maximum efficiency, and minimum investment at the same time.

Constrained vs Non Constrained

CONSTRAINTS

Constraints are referring to the limit of the design space we impose

Linear

$$Cx = b$$

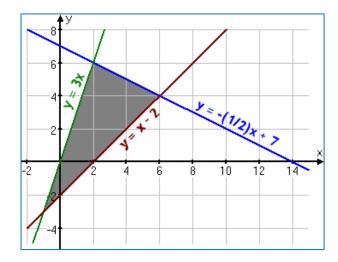
• Non Linear

$$x^T C x = b$$

• Equalities Cx = b

• Inequalities $Cx \ge b$

• Lower and Upper bounds $a_1 \le x \le a_2$



Problem size

Let n be the number of design variables

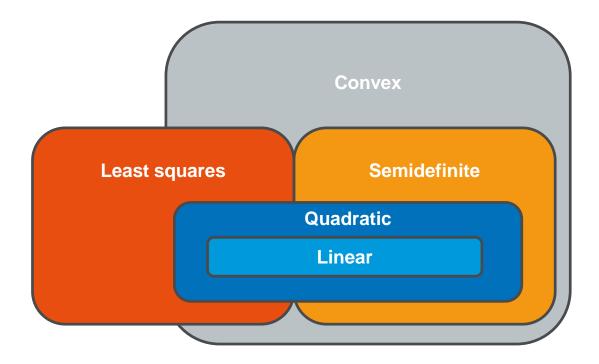
- n < 10 : Small problem (s)
- 10 < n < 100 : Medium problem (m)
- 100 < n < 1000 : Large problem (I)

Solver speed and memory needs are depending on the problem size

Optimization solvers in SCILAB

Copyright © ESI Group, 2017. All rights reserved.

How to choose SCILAB optimization solver



Objective	Constraints [Bnds, Eq, Inec	Siz I]	e G	radient	Solver
Linear	ΥΥΥ	m			karmarkar
Quadratic	ΥΥΥ	L			qpsolve
SemiDef	ΝΥΥ	L			Imisolver
SemiDef	YNY	L			semidef
N.L.S.	ΝΝΝ	L	C	optional	Leastsq / Isqrsolve
Non-linear	ΥΝΝ	L		Y	optim
Non-linear	ΝΝΝ	S			fminsearch
Objective	Single	Mu	ti	U	se
	Objective	Objective			
Continuous/ Differentiable	Fminsearch				
Non Smooth	optim				
Discrete	Optim_sa, optim_ga	Optim_moga Optim_nsga2			

get it right^q

www.esi-group.com

Linear optimization

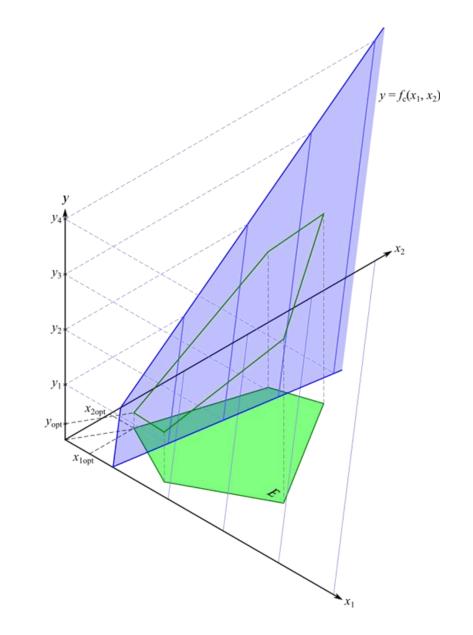
Linear problem

$$\min_{x} f(x) = c^T x$$

Linear constraints

- Equalities
- Inequalities

$$C_1^T x = b_1$$
$$C_2^T x \ge b_2$$



Linear optimization - karmarkar

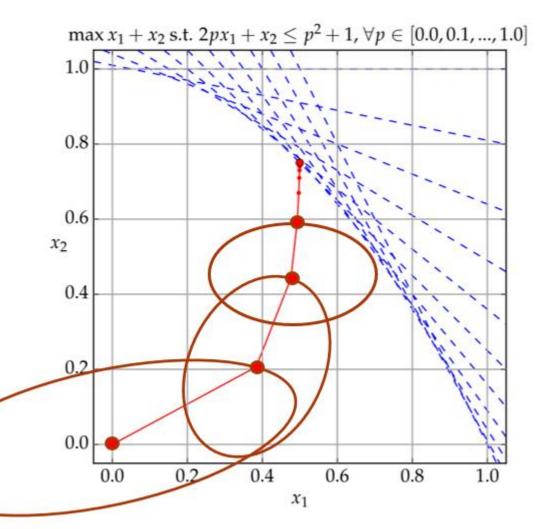
Interior Points Method

« Affine Scaling » Solve suite of optimization problems on ellipsoid.

Ellipsoids size are decreasing at each iteration by a given scale factor (between 0 and 1).

Caracteristic:

- Polynomial time $O(n^m)$
- Direct search
- (In)Equalities and bounds constraints



Quadratic optimization

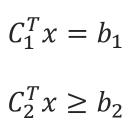
Quadratic problem

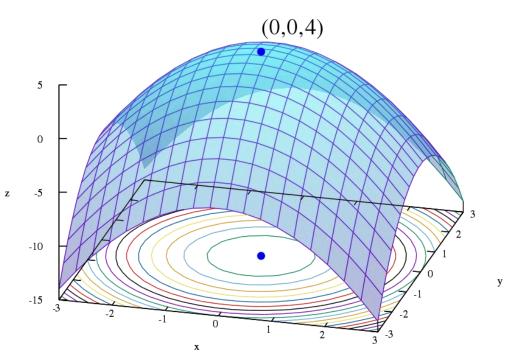
$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T Q \mathbf{x} + c^T \mathbf{x}$$

With Q la « hessian » and c « gradient » of a virtual energy function

Linear constraints

- Equalities
- Inequalities





Concave shape, convex problem

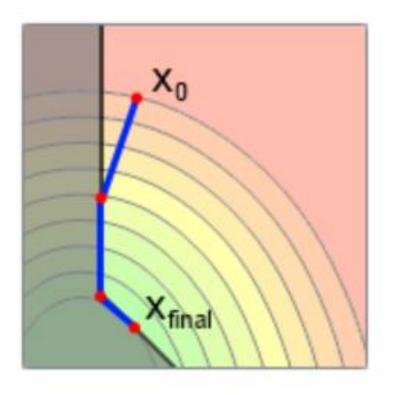
Quadratic optimization - qpsolve

Goldfarb-Idnani solver

« Feasible active set method » Find non-constrained global optimum, then add non-respected constraints one after the other (activation)

Caracteristics :

- Strictly convex problems
- (In)Equalities and bounds constraints
- Polynomial time $O(n^m)$
- Direct search



Non Linear Least Squares

Least squares problem

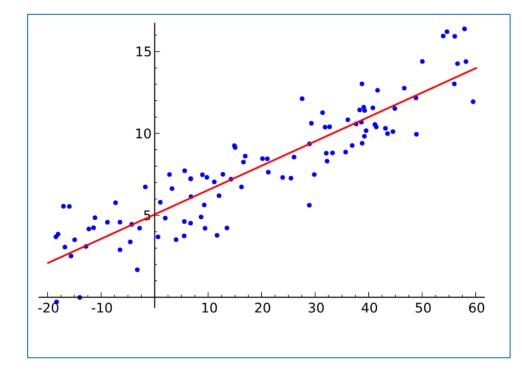
$$\min_{x} \|f(x)\|^2$$
$$f: IR^n \to IR^m$$

n number of unknonw, m nb of points f non necessarily linear or differentiable

Linear regression (QUADRATIC)

Minimize distance between measurements (n = 2) and an unknown line (m = 1)

$$\frac{1}{2}|Qx - c|^2 = \frac{1}{2}(x^T Q^T Q x - 2x^T Q^T c + c^T c)$$



Non Linear Least Squares - Isqrsolve

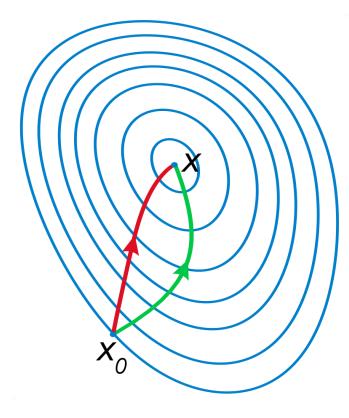
Levenberg-Marquardt algorithm

To find a new direction:

- Gradient method (green) to provide steepest descent direction. Efficient when far from the optimal position.
- Gauss-Newton (red), approximate the problem as locally quadratic and solve it to find new position.
 Efficient when close to the optimal position.

Caracteristics

Polynomial time



Non Linear optimization - fminsearch

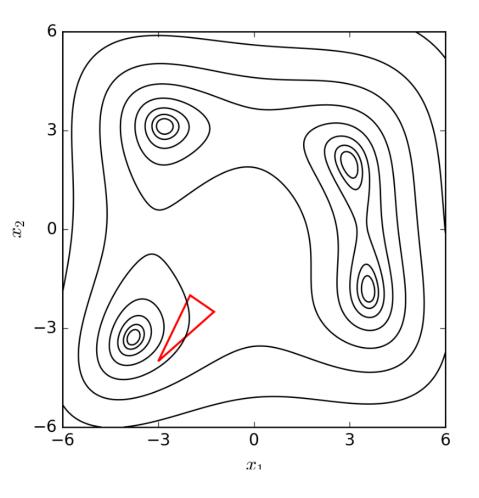
Nelder-Mead Simplex

Simplex manipulation

3D Simplex

Caracteristics

- Non constrained
- High complexity Better suited for small problem
- Direct search



Non Linear optimization - optim

Quasi-Newton method

Quasi-Newton statement

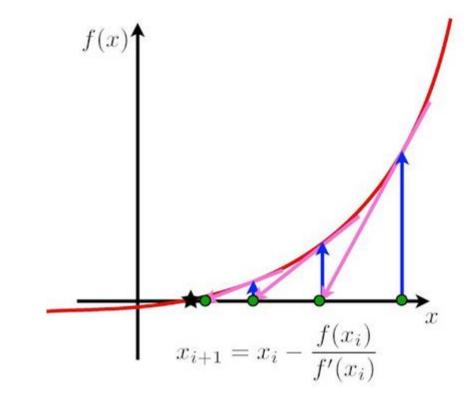
$$x_{k+1} - x_k = B_k \big(f(x_{k+1}) - f(x_k) \big)$$

 $\Rightarrow x_{k+1} \approx x_k - \rho_k B_k f(x_k)$

- Broyden-Fletcher-Goldfarb approximation for pour Hessian B_k
- ρ_k pour control convergence

Caracteristics

- High memory need to store B_k : O(n²) (O(n) in case of limited method)
- Gradient info must be provided
- Polinomial time O(n²) but not accurate



Nota

- Fsolve (alternative)
- Datafit / leastsq (built upon optim)

Genetic Algorithms

GA Theory

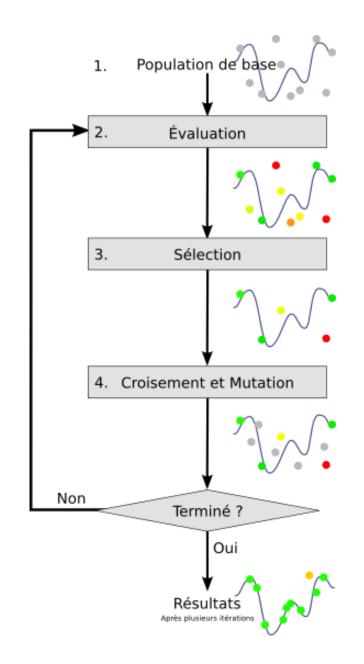
Natural selection Probabilistics and non deterministics transitons:
Selection, Cross-over et Mutation

Caracteristics

- Bounds constraints
- Non Linear, Non Convex

Remarks

optim_ga /optim_moga: Single/Multi objective pareto_filter: Non-dominated sorting



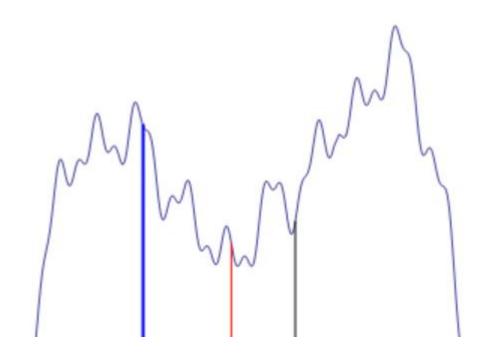
Simulated Annealing

Simulated Annealing optim_sa Empirical method based on metallurgical process

Alternate slow cooling cycles with heating cycles (annealing) in order to minimize material internal energy (strongest configuration)

Metropolis-Hastings Algorithm

Starting at a given state, we modify system towards another state. Either it get better (energy decrease) or it get worse.



Drawbacks:

- Empirical set-up
- Bounds constraints only

Benefits:

- Global optimum
- Discrete optimization