
1www.esi-group.com

Copyright © ESI Group, 2017. All rights reserved.Copyright © ESI Group, 2017. All rights reserved.

www.esi-group.com

SCILAB WORKSHOP

Optimization in SCILAB

SCILAB TEAM

17th, October 2019



2www.esi-group.com

Copyright © ESI Group, 2017. All rights reserved.

Advanced post-processing
Airfoil shape optimization
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Quick introduction to Numerical Optimization
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Optimization problem

max
𝑥∊𝑋

𝑓 𝑥

3 Steps:

1/ Identification of the decision variables: x

2/ Set-up of constraints associated to the 
variables: X

3/ Definition of a cost/objective function: f
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Two formulations, One problem

Solving the problem

min
𝑥∊𝑋

𝑓(𝑥)

Corresponds to solve the problem

max
𝑥∊𝑋

−𝑓 𝑥

Minimize or Maximize a function?
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Numerical optimization

Initialization

Evaluation of cost

function

Choice of direction

New element

Optimal element

!
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1/ Initial approximation– Influence convergence

2/ Number of iterations– Recursive process

3/ Convergence speed

4/ Stopping criteria

• Maximum number of iterations, …

• Cost function value under a given threshold, … 

𝑓(𝑥𝑛) < 𝜀1

• Difference between two consecutive approximations under a given
threshold, …

𝑥𝑛+1 − 𝑥𝑛 < 𝜀2

Classical set-up parameters for optimization solvers
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General remarks

• Local extrema are easy to find!

• Some algorithm are performing
local search only!

Take care on initial

approximation!

WARNING : Different types of extrema
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Direct search

Search for an optimal position using
cost function evaluations, without any
computation of the function exact or
approximate derivatives.

Interior Points method, simplex

Maximum search methods

Derivatives computation

Search for an optimal position using
cost function derivatives (Jacobian for
steepest ascent direction, Hessian for
critical point type) exact or approximate
computation.

Gradient method, Newton method

How to make design space exploration?
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Optimization problem typology
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Travelling salesman problem

Continuous vs Discrete

DISCRETE (Combinatorial Analysis)

Variables are taking values in a finite set
or states (IN, ON/OFF, …).

Classical examples: Travelling salesman
problem which consists in finding the
shortest path binding a given set of cities.
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Mono vs Multi objective

MULTI OBJECTIVE

min
𝑥∊𝑋

(𝑓1 𝑥 , 𝑓2 𝑥 ,… , 𝑓𝑘 𝑥 )

Several cost, potentially conflicting,
functions minimization.

Found solution is therefore not unique.
The complete set of solutions is called
Pareto Front.

Choice is about trade-off
An example would be to ensure
maximum efficiency, and minimum
investment at the same time.
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Constrained vs Non Constrained

CONSTRAINTS

Constraints are referring to the limit of the design space we impose

• Linear

𝐶𝑥 = 𝑏

• Non Linear

𝑥𝑇𝐶𝑥 = 𝑏

• Equalities
𝐶𝑥 = 𝑏

• Inequalities
𝐶𝑥 ≥ 𝑏

• Lower and Upper bounds
𝑎1 ≤ 𝑥 ≤ 𝑎2
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Problem size

Let n be the number of design variables

• n < 10 : Small problem (s)

• 10 < n < 100 : Medium problem (m)

• 100 < n < 1000 : Large problem (l)

Solver speed and memory needs
are depending on the problem size
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Optimization solvers in SCILAB
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How to choose SCILAB optimization solver

Convex

SemidefiniteLeast squares

Quadratic

Linear

Objective Constraints

[Bnds, Eq, Ineq]

Size Gradient Solver

Linear Y Y Y m karmarkar

Quadratic Y Y Y L qpsolve

SemiDef N Y Y L lmisolver

SemiDef Y N Y L semidef

N.L.S. N N N L optional Leastsq / 

lsqrsolve

Non-linear Y N N L Y optim

Non-linear N N N s fminsearch

Objective Single 

Objective

Multi 

Objective

Use

Continuous/

Differentiable

Fminsearch

Non Smooth optim

Discrete Optim_sa, 

optim_ga

Optim_moga

Optim_nsga2
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Linear problem
min
𝑥

𝑓 𝑥 = 𝑐𝑇𝑥

Linear constraints

• Equalities
𝐶1
𝑇𝑥 = 𝑏1

• Inequalities
𝐶2
𝑇𝑥 ≥ 𝑏2

Linear optimization
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Interior Points Method

« Affine Scaling »

Solve suite of optimization problems on
ellipsoid.

Ellipsoids size are decreasing at each
iteration by a given scale factor (between 0
and 1).

Caracteristic:

• Polynomial time O(𝑛𝑚)

• Direct search

• (In)Equalities and bounds constraints

Linear optimization - karmarkar
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Quadratic problem

min
x
𝑓 𝑥 =

1

2
𝑥𝑇𝑄𝑥 + 𝑐𝑇𝑥

With Q la « hessian » and c « gradient »

of a virtual energy function

Linear constraints

• Equalities
𝐶1
𝑇𝑥 = 𝑏1

• Inequalities
𝐶2
𝑇𝑥 ≥ 𝑏2

Quadratic optimization

Concave shape, convex problem



20www.esi-group.com

Copyright © ESI Group, 2017. All rights reserved.

Quadratic optimization - qpsolve

Goldfarb-Idnani solver

« Feasible active set method »

Find non-constrained global optimum,
then add non-respected constraints one
after the other (activation)

Caracteristics :

• Strictly convex problems

• (In)Equalities and bounds constraints

• Polynomial time O(𝑛𝑚)

• Direct search
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Least squares problem

min
𝑥

𝑓 𝑥 2

𝑓: 𝐼𝑅𝑛 → 𝐼𝑅𝑚

𝑛 number of unknonw, 𝑚 nb of points

𝑓 non necessarily linear or differentiable

Linear regression (QUADRATIC)

Minimize distance between measurements (𝑛 = 2) and an unknown line (𝑚 = 1)

1

2
𝑄𝑥 − 𝑐 2 =

1

2
(𝑥𝑇𝑄𝑇𝑄𝑥 − 2𝑥𝑇𝑄𝑇𝑐 + 𝑐𝑇𝑐)

Non Linear Least Squares
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Non Linear Least Squares - lsqrsolve

Levenberg-Marquardt algorithm

To find a new direction:

• Gradient method (green) to provide steepest
descent direction. Efficient when far from the
optimal position.

• Gauss-Newton (red), approximate the problem as
locally quadratic and solve it to find new position.
Efficient when close to the optimal position.

Caracteristics

• Polynomial time
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Non Linear optimization - fminsearch

Nelder-Mead Simplex

Simplex manipulation

Caracteristics

• Non constrained

• High complexity
Better suited for small problem

• Direct search

3D Simplex
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Quasi-Newton method

Quasi-Newton statement
𝑥𝑘+1 − 𝑥𝑘 = 𝐵𝑘 𝑓 𝑥𝑘+1 − 𝑓 𝑥𝑘

⇒ 𝑥𝑘+1 ≈ 𝑥𝑘 − ρ𝑘𝐵𝑘𝑓(𝑥𝑘)

• Broyden-Fletcher-Goldfarb
approximation for pour Hessian 𝐵𝑘

• ρ𝑘 pour control convergence

Caracteristics

• High memory need to store 𝐵𝑘 : O(n²)
(O(n) in case of limited method)

• Gradient info must be provided

• Polinomial time O(n²) but not accurate

Non Linear optimization - optim

Nota

• Fsolve (alternative)

• Datafit / leastsq (built upon optim)
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GA Theory

- Natural selection -

Probabilistics and non deterministics transitons:

Selection, Cross-over et Mutation

Caracteristics

• Bounds constraints

• Non Linear, Non Convex

Remarks

optim_ga /optim_moga: Single/Multi objective

pareto_filter: Non-dominated sorting

Genetic Algorithms
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Simulated Annealing

Simulated Annealing optim_sa

Empirical method based on metallurgical
process

Alternate slow cooling cycles with heating
cycles (annealing) in order to minimize material
internal energy (strongest configuration)

Metropolis-Hastings Algorithm

Starting at a given state, we modify system
towards another state. Either it get better
(energy decrease) or it get worse.

Drawbacks:

• Empirical set-up

• Bounds constraints only

Benefits:

• Global optimum

• Discrete optimization


