
Optimization Techniques with
SCILAB

By

Gilberto E. Urroz, Ph.D., P.E.

Distributed by

i nfoClearinghouse.com

©2001 Gilberto E. Urroz
All Rights Reserved

A "zip" file containing all of the programs in this document (and other
SCILAB documents at InfoClearinghouse.com) can be downloaded at the
following site:

http://www.engineering.usu.edu/cee/faculty/gurro/Software_Calculators/Scil
ab_Docs/ScilabBookFunctions.zip

The author's SCILAB web page can be accessed at:

http://www.engineering.usu.edu/cee/faculty/gurro/Scilab.html

Please report any errors in this document to: gurro@cc.usu.edu

http://www.engineering.usu.edu/cee/faculty/gurro/Software_Calculators/Scilab_Docs/ScilabBookFunctions.zip
http://www.engineering.usu.edu/cee/faculty/gurro/Software_Calculators/Scilab_Docs/ScilabBookFunctions.zip
http://www.engineering.usu.edu/cee/faculty/gurro/Scilab.html
mailto:gurro@cc.usu.edu

Download at InfoClearinghouse.com 1 © 2001 Gilberto E. Urroz

OPTIMIZATION USING SCILAB 2

Definitions 2

Graphical solution 2

Linear programming 4
SCILAB function for solving linear programming problems 5
Applications of function linpro - case 1: inequality constraints and bounds present 6
Applications of function linpro - case 2: inequality constraints and bounds present 7
Graphical illustration of linear programming solution 8
Lagrange multipliers 9
What are Lagrange multipliers? 10

Quadratic programming 10
SCILAB function for solving quadratic programming problems 11
An application of function quapro 11

SCILAB non-linear programming functions 13
Function optim 13

Application of function optim 13
Specifying the method of solution 14
Obtaining the function gradient at the optimum point 14
Obtaining a work vector for quasi-Newton method 15
Placing simple constraints on the design variables 15

Function leastsq 16
Application of function leastsq 16
Function leastsq using the function’s gradient 17
Function leastsq with different output options 17
Function leastsq returning function gradient at optimum point 18
Specifying the method of solution for function leastsq 18
Function leastsq with upper and lower boundary constraints for the design variables 18

Exercises 19

Download at InfoClearinghouse.com 2 © 2001 Gilberto E. Urroz

Optimization using SCILAB
The objective of optimization techniques is to determine the values of the independent
variables that minimize or maximize a function (known, in general, as the objective function)
subject to a number of constraints. Techniques presented in this chapter include graphic
approach for functions of two variables, linear programming, quadratic programming, and
general non-linear programming.

Definitions

The general minimization problem can be stated as

}),...,(),({min 21 mDx
fxfxf

∈
,

where fi(x), i=1,2,…,m, are scalar objective functions that map a vector x, known as the design
variable vector, into an objective space. The values of x are restricted to a feasible domain
region D described by N inequality constraints and M equality constraints. The domain D is
described as

D = {x : gj(x)≤0, hk(x)=0, j=1,2,…,N, k=1,2,…,M}.

A linear programming problem results when the objective function and the constraints are
linear functions of the design variables. Non-linear programming problems result from having
at least one of the objective or constraint functions be non-linear.

Graphical solution

A graphical solution is presented here for an objective function of two variables, w = f(x,y) =
sin(x)cos(y). The purpose of this solution is to illustrate the idea of optimization with a simple
function whose graph provides a good idea of the solution. Methods for pinpointing the
solution will be presented later.

The idea behind the graphical solution is to produce a contour plot of the function in the
feasible domain as well as a combined three-dimensional and contour plot. These two visual
aids would be, in many cases, enough to determine the values of the design variables that
produce a minimum or a maximum of the function.

The problem to be solved is specified as

)},,({min
,

yxfw
Dyx

=
∈

where D is defined by

D = {(x,y) : 0<x<6, 0<y<6}.

Download at InfoClearinghouse.com 3 © 2001 Gilberto E. Urroz

Using SCILAB we will define the function f(x,y) and produce a contour plot of the function in
the feasible domain:

-->deff('[w]=f(x,y)','w=sin(x)*cos(y)')

-->x=[0:0.25:6];y=[0:0.25:6];z=feval(x,y,f);

-->contour(x,y,z,10)

-->xtitle('Contour plot of w=sin(x)*cos(y)','x','y')

The contour plot is good enough to help us determine the solution. Within the solution domain
we can identify three maximum values (points near (1.5,0.0), (1.5,6.0), and (4.7,3.2)) and
three minimum values (points near(1.5,3.2), (4.7,0), and (4.7,6)).

A combined three-dimensional plot with contours can be generated using functions contour and
plot3d as shown next. First, we define a parallelepiped (rect) large enough to contain the
three-dimensional plot and to be able to show the projected contour plots in a plane parallel
to the x-y plane. The values in rect are [xmin,xmax,ymin,ymax,zmin,zmax]. The parameters in the
call to contour are as follows: x,y are vectors containing values of x and y coordinates; z is the
matrix of values of z = f(x,y) evaluated earlier; the next three values are nc = 10, the number
of contours to be shown, θ = 35 and φ = 45 are the values, in degrees, of the angles of the
viewpoint used for the three-dimensional graph; the string ‘x@y@z’ indicates the axes labels to
be used; the vector [1,1,1] is a vector specifying the graph style (see --> help plot3d); rect
is the vector defined above; and, zl = -8 is the value of the plane z = zl where the contour plot
is to be projected. We chose a value of -8 to allow enough spacing between the surface, which
ranges in -1 < z < 1, and the contour plane. The parameters in the call to function plot3d are
very similar to those in the call to function contour, except that a number of contours is not
required.

-->rect=[0,6,0,6,-8,1]
 rect =

! 0. 6. 0. 6. - 8. 1. !

-->contour(x,y,z,10,35,45,'x@y@z ',[1,1,1],rect,-8)

-->plot3d(x,y,z,35,45,'x@y@z',[2,1,4],rect)

Download at InfoClearinghouse.com 4 © 2001 Gilberto E. Urroz

-->xtitle('Function w = sin(x)*cos(y)')

The combined three-dimensional and contour plot serves to verify the observations already
made from the contour plot alone about the location of the minimum and maximum values of
the function in the domain of interest.

A graphical solution is limited to functions of one or two variables and provides only an
approximate location for the solution. The methods presented next for linear, quadratic, and
non-linear functions will produce more accurate solutions.

Linear programming

Linear programming is an optimization method applied to the solution of problems in which
both the objective function and the constraint functions are linear functions of the design
variables. The problem may be expressed as

minimize f(x) = cTx
subject to

Ax = b,
Gx ≤ h,

and
xL ≤ x ≤ xU

where x is a vector containing the n design variables, i.e., x = [x1, x2, …, xn]
T, c is the constant

column vector containing the n coefficients of the objective function, A is an m× n matrix, b is
a column vector with m components, G is an p× q matrix, h is a column vector with p
components, and xL and xU are vectors indicating constraints on the values of the design
variables.

As an example, consider the problem of minimizing the objective function

Download at InfoClearinghouse.com 5 © 2001 Gilberto E. Urroz

f(x) = 3x1 + 5x2 -2x3,

subject to

x1+3x2 = 5
x1+x2 - x3 = 2

2x1 - x2 ≤ 3
x1 + x2 + x3

 ≤ 25

0≤ x1 5,
0≤ x2 ≤ 10,
 0≤ x3≤ 3

The problem can be re-written as minimize f(x) = cTx, subject to Ax = b, Gx ≤ h, and xL ≤ x ≤
xU, with

,,
2
5

,
111

031
,,

2
5

,
111

031
,,

2
5
3

3

2

1

=

−

=

=

−

=

=

−
= hGbAxc

x
x
x

.
3

10
5

,
0
0
0

=

= UL xx

SCILAB function for solving linear programming problems

SCILAB provides function linpro for the solution of linear programs. The function can be called
using any of the following forms:

 [xopt,lagr,fopt]=linpro(c,C,d [,x0])
 [xopt,lagr,fopt]=linpro(c,C,d,xL,xU,[,x0])
 [xopt,lagr,fopt]=linpro(c,C,d,xL,xU, m, [,x0])
 [xopt,lagr,fopt]=linpro(c,C,d,xL,xU, m,x0 [,imp])

The function returns values xopt, lagr, and fopt, where xopt is the value of the design
variables vector that minimizes the objective function, f(x) = c’*x, lagr is a vector of Lagrange
multipliers (see below), and fopt is the optimal value of the function, i.e., fopt = f(xopt). The
arguments of the function call are:

• the vector of n coefficients of the objective function, c,
• a matrix C of (m+p) rows and n columns containing the rows of matrices A and G in that

order,
• a column vector d with (m+p) rows containing the elements of vectors b and h in that

order,
• column vectors xL and xU representing the vectors of lower and upper bounds of the

design variables, i.e., xL and xU, respectively,
• m is the number of equality constraints (i.e., the number of rows in matrix A),

Download at InfoClearinghouse.com 6 © 2001 Gilberto E. Urroz

• x0, an optional argument for the first three forms of the function call, is the vector
containing the n initial guesses for the solution,

• imp, also an optional argument is an integer value that determines the amount of
information provided by function linpro (try values imp = 7,8, …)

The first form of the call to linpro, namely, [xopt,lagr,fopt]=linpro(c,C,d,xL,xU,[,x0]), is used
when there are only inequality constraints. The second form, [xopt,lagr,fopt] = linpro(c, C, d,
xL, xU,[,x0]), is used when inequality constraints as well as lower and upper boundaries for the
design variables. The second form of the function call, [xopt,lagr,fopt]=linpro(c,C,d,xL,xU,
m, [,x0]), is used when there are inequality and equality constraints (m equality constraints),
as well as lower and upper boundaries of the design variables. Finally, the last form of the
function call, [xopt,lagr,fopt]=linpro(c,C,d,xL,xU, m,x0 [,imp]), requires an initial guess x0
besides equality and inequality constraints and upper and lower bounds of the design variables.

To illustrate the application of function linpro we will use the problem stated earlier, namely,
minimize f(x) = cTx, subject to A⋅x = b, G⋅x ≤ h, and xL ≤ x ≤ xU, with

,,
2
5

,
111

031
,,

2
5

,
111

031
,,

2
5
3

3

2

1

=

−

=

=

−

=

=

−
= hGbAxc

x
x
x

.
3

10
5

,
0
0
0

=

= UL xx

We will illustrate the use of function linpro by changing the number of constraints of the
problem. First, we load the constant vectors and matrices shown using SCILAB:

-->c=[3;5;-2];A=[1,3,0;1,1,-1];b=[5;2];G=[1,3,0;1,1,-1];h=[5;2];

-->xL = zeros(3,1); xU=[5;10;3];

Applications of function linpro - case 1: inequality constraints and
bounds present

The following SCILAB commands set up and solve the linear programming problem using only
inequality constraints and bounds for the design variables. For this case we take C = G, d = h,
and obtain the solution to the linear programming problem:

-->C=G,d=h
 C =

! 1. 3. 0. !
! 1. 1. - 1. !

 d =

! 5. !

Download at InfoClearinghouse.com 7 © 2001 Gilberto E. Urroz

! 2. !

-->[xopt,lagr,fopt]=linpro(c,C,d,xL,xU)
 fopt = - 6.
 lagr =

! - 3. !
! - 5. !
! 2. !
! 0. !
! 0. !

 xopt =

! 0. !
! 0. !
! 3. !

The optimal solution is x1 = 0, x2 = 0, and x3 = 3, corresponding to a value of -6 for the function.

Applications of function linpro - case 2: inequality constraints and
bounds present

The following SCILAB commands set up and solve the linear programming problem using both
equality and inequality constraints and bounds for the design variables. For this case we take C
= [A;G], d = [b;h], as follows:

-->C=[A;G], d = [b;h]
 C =

! 1. 3. 0. !
! 1. 1. - 1. !
! 1. 3. 0. !
! 1. 1. - 1. !
 d =

! 5. !
! 2. !
! 5. !
! 2. !

-->[xopt,lagr,fopt]=linpro(c,C,d,xL,xU,2)
 fopt =

 9.
 lagr =

! 0. !
! 0. !
! 0. !
! - 1. !
! - 2. !
! 0. !
! 0. !

 xopt =

! .5 !

Download at InfoClearinghouse.com 8 © 2001 Gilberto E. Urroz

! 1.5 !
! 0. !

Alternative calls to function linpro may include an initial guess for the solution as the last
argument in the function call. In the first case, a specific value of x is provided. In the
second case, the option ‘v’ indicates that a vertex of the feasible region is to be used as an
initial guess. In the third case, the option ‘g’ indicates that an arbitrary initial value --
generated by the function -- is to be used. You can check, by using SCILAB, that the solution
is the same in any of the following function calls:

-->[xopt,lagr,fopt]=linpro(c,C,d,xL,xU,2,[0;0;0]);

-->[xopt,lagr,fopt]=linpro(c,C,d,xL,xU,2,'v');

-->[xopt,lagr,fopt]=linpro(c,C,d,xL,xU,2,'g');

Graphical illustration of linear programming solution

A linear programming involving two design variables (x,y) can be used to illustrate the solution
of the problem through graphics. The problem to be solved is to minimize f(x,y) = x1/4 + x2/3,
subject to the constraints -5x1-x2 ≤ -5, -2x1+5x2 ≤ -10, x1 ≥ 0, x2 ≥ 0. The problem can be set up
and solved using SCILAB as follows:

-->c=[1/4;1/3];xL=[0;0];xU=[1e10;1e10]; C = [-5,-1;-2,-5]; d = [-5;-10];

-->[xopt,lagr,fopt]=linpro(c,C,d,xL,xU,0);

-->xopt
 xopt =

! .6521739 !
! 1.7391304 !

To illustrate the problem graphically we first define the objective function, w=f(x,y), and plot
a set of contours for it. We also define functions representing the constraints, y1=f1(x) and
y2=f2(x), and plot the lines corresponding to these constraints. The solution is the vertex
where the two constraint lines intercept as labeled in the plot.

-->deff('[w]=f(x,y)','w=c(1)*x+c(2)*y')
-->xx=[0:1:8];yy=[0:1:6];zz=feval(xx,yy,f);
-->contour(xx,yy,zz,10)
-->deff('[y1]=f1(x)','y1=-5*x+5')
-->deff('[y2]=f2(x)','y2=(10-2*x)/5')
-->xxx=[0:0.01:8];yy1=f1(xxx);yy2=f2(xxx);
-->contour(xx,yy,zz,10)
-->plot2d([xxx' xxx'],[yy1' yy2'],[-1,-1],'011',' ',[0 0 8 6])
-->xstring(xopt(1)+0.05, xopt(2)+0.05,'solution')
-->xtitle('Linear regression problem','x','y')

Download at InfoClearinghouse.com 9 © 2001 Gilberto E. Urroz

Notice that the point of intersection of the lines corresponds with the minimum value of the
function illustrated by the contours. The contours decrease towards the origin. The feasible
domain is the region above and to the right of the two thick lines, above the x-axis and to the
right of the y-axis.

Lagrange multipliers

The elements in the vector of Lagrange multipliers lagr provide information about the effect of
upper and lower boundaries as well as on any constraints. . If vectors of lower and upper
bounds, i.e., xL and xU, are provided, the vector of Lagrange multipliers, lagr, will have
(n+m+p) components. Components 1 to n are associated with the n upper and lower bounds of
the constraint variables, components n+1 through (n+m) are associated with the m equality
constraints, while components (n+m+1) through (n+m+q) are associated with the q inequality
constraints.

If any component of the Lagrange multiplier vector is zero, it means that that particular bound
or constraint is not active (i.e., the solution was found without using that particular condition).
If an lower bound constraint is active, then the corresponding Lagrange multiplier is negative.
On the other hand, if an upper bound constraint is active, the corresponding Lagrange
multiplier is positive.

For example, in the first application of function linpro used above, we found the following
results for the vector of Lagrange multipliers:

lagr =

! - 3. !
! - 5. !
! 2. !
! 0. !
! 0. !

The first three elements are related to the upper and lower bounds of the variables x1, x2, and
x3, respectively. The fact that lagr(1) = -3 and lagr(2) = -5 indicates that the lower bound
constraint was used for variables x1 and x2. What this means, in this case, is that x1 = 0 and x2

= 0, i.e., variables x1 and x2 took their lower bounds in the optimal solution. The fact that
lagr(3) = 2 indicates that the upper bound constraint was used for x3, i.e., x3 = 3.0. Finally,
the fact that lagr(4) = lagr(5) = 0 indicates that none of the two inequality constrains in the
problem was used. The optimal solution found was x1 = 0, x2 = 0, and x3 = 3.

Download at InfoClearinghouse.com 10 © 2001 Gilberto E. Urroz

In the second example of linpro presented above the Lagrange multipliers vector was found to
be

lagr =

! 0. !
! 0. !
! 0. !
! - 1. !
! - 2. !
! 0. !
! 0. !

This is interpreted as indicating that none of the three upper or lower bound constraints for the
design variables were used (lagr(1) = lagr(2) = lagr(3) = 0), neither were any of the two
inequality constraints (lagr(6) = lagr(7) = 0). The equality constraints, represented by lagr(4)
= -1 and lagr(5) = -2, were both used in the solution.

What are Lagrange multipliers?

Lagrange multipliers are variables introduced in an optimization problem to incorporate the
problem constraints into an expanded objective function. For example, given the objective
function f(x1,x2,…,xn) subject to the constraints represented by m(<n) equations

φ1(x1,x2,…,xn) = 0, φ2(x1,x2,…,xn) = 0, …, φ n(x1,x2,…,xn) = 0,

we can form the expanded objective function

..),...,,(),...,,(),...,,(
1

212121 ∑
=

⋅+=Φ
m

j
njnn xxxxxxfxxx φλ

The variables λj introduced in function Φ are known as Lagrange multipliers. The solution to
the problem is obtained by solving simultaneously the m constraint equations and the n
equations resulting from the conditions

∂Φ/∂x1 = 0, ∂Φ/∂x2 = 0,…, ∂Φ/∂xn = 0.

The resulting problem has (n+m) unknowns, i.e., x1, x2, …, xn, and λ1, λ2, …, λm, and (n+m)
equations. Thus, the problem has a unique solution that provides the minimum (or maximum)
value of the objective function f(x1,x2,…,xn).

Quadratic programming

Quadratic programming is an optimization method applied to the solution of problems in which
both the objective function is defined, in general, by an objective function consisting of a
quadratic form plus a linear combination of the design variables. The constraint functions of
the problem are still linear functions of the design variables. The problem may be expressed
as

minimize f(x) = ½ xTQx + cTx
subject to

Download at InfoClearinghouse.com 11 © 2001 Gilberto E. Urroz

Ax = b,
Gx ≤ h,

and
xL ≤ x ≤ xU

where x is a vector containing the n design variables, i.e., x = [x1, x2, …, xn]
T, Q is a n× n

symmetric square matrix, c is a constant column vector containing n coefficients, A is an m× n
matrix, b is a column vector with m components, G is an p× q matrix, h is a column vector with
p components, and xL and xU are vectors indicating constraints on the values of the design
variables.

For the case in which two design variables are present, i.e., x = [x1 x2], the objective function
f(x) = ½ xTQx + cTx is a quadratic equation in x1 and x2 given by

[] [] .),(
2

1
21

2

1

2,21,2

2,11,1
2121

⋅+

⋅

⋅=

x
x

cc
x
x

qq
qq

xxxxf

=),(21 xxf + + + + +
1
2

x1
2

q ,1 1
1
2

x1 x2 q ,2 1
1
2

x2 x1 q ,1 2
1
2

x2
2

q ,2 2 c1 x1 c2 x2

Consider, for example, the case in which q11 = 2, q12 = q21 = -1, q22 = 3, c1 = 2, and c2 = 4. The
objective function is,

f(x1,x2) = x1
2 - x1x2 + (3/2)x2

2
 + 2x1+4x2.

Subject to the constraints:
-2x1-3x2 ≤ -5,
-5x1-x2 ≤ -1,

x1 ≥ 0, x2 ≥ 0.

SCILAB function for solving quadratic programming problems

SCILAB provides function quapro for the solution of a problem composed of a quadratic
objective function subjected to linear constraints. The function can be called using any of the
following forms:

 [xopt,lagr,fopt] =quapro(Q,c,C,d [,x0])
 [xopt,lagr,fopt]= quapro(Q,c,C,d,xL,xU,[,x0])
 [xopt,lagr,fopt]= quapro(Q,c,C,d,xL,xU, m, [,x0])
 [xopt,lagr,fopt]= quapro(Q,c,C,d,xL,xU, m,x0 [,imp])

where the parameters c, C, d, xL, xU, m, x0, and imp, and the variables xopt, lagr, and fopt
are exactly the same as in function linpro. The only difference is the first argument Q which
must be a square symmetric matrix.

An application of function quapro

We will solve the quadratic programming presented earlier which we re-write as minimize f(x)
= ½ xTQx + cTx, subject to Gx ≤ h, and xL ≤ x ≤ xU, with

Download at InfoClearinghouse.com 12 © 2001 Gilberto E. Urroz

.
101
101

,
0
0

,
1
5

,
15
32

,
4
2

,
31
12

10

10

×
×

=

=

−
−

=

−−
−−

=

=

−

−
= UL xxhGcQ

To use function quapro we use the values of Q, c, xL, and xU, as described above, and replace
C with G and d with h. The following SCILAB script produces the solution using quapro and
shows a graphic illustrating the solution:

//Quadratic programming solution

Q = [2,-1; -1,3]; c=[2;4]; C=[-2,-3;-5,-1]; d=[-5;-1];

xL = [0;0]; xU = [1e10;1e10];

[xopt,lagr,fopt] = quapro(Q,c,C,d,xL,xU);

xopt

//Plot illustrating quadratic programming solution

deff('[w]=f(x1,x2)','w=x1^2-x1*x2+(3/2)*x2^2+2*x1+4*x2')

xx1=[-5:0.5:5]; xx2=[-5:0.5:5]; zz = feval(xx1,xx2,f);

contour(xx1,xx2,zz,10)

deff('[y1]=f1(x)','y1=(5-2*x)/3')

deff('[y2]=f2(x)','y2=1-5*x')

xxx=[-5:0.01:5];yy1=f1(xxx);yy2=f2(xxx);

plot2d([xxx' xxx'],[yy1' yy2'],[1 1],'011',' ',[-5 -5 5 5])

xpoly([-5,5],[0,0],'lines'); xpoly([0,0],[-5,5],'lines');

xfrect(xopt(1)-0.05,xopt(2)-0.05,0.1,0.05)

xstring(xopt(1)+0.1, xopt(2)+0.1, 'solution')

xtitle('Quadratic programming solution','x1','x2')

To run the script (called Quad1), assumed stored in the current working directory, use:

-->exec(‘Quad1’)

The results are:

-->xopt
xopt =

! 1.2142857 !
! .8571429 !

Download at InfoClearinghouse.com 13 © 2001 Gilberto E. Urroz

The contour plot suggest that the absolute minimum of the function occurs somewhere in the
third quadrant (x1<0 and x2<0). The feasible domain is located in the first quadrant (x1>0,
x2>0) and to the right and above the two lines shown. The optimal solution is the point labeled
‘solution’ in the graph.

SCILAB non-linear programming functions

SCILAB provides functions optim and leastsq to obtain the value of x that minimizes a non-
linear function f(z) allowing only constrains on the lower and upper limits of the design
variables, if any.

Function optim

The simplest call to function optim is

 [fopt,xopt]=optim(costf,x0)

where xopt is the value of the design variables vector x that minimizes function costf. The
value of the function at x=xopt is given by fopt. An initial guess to the solution, x0, is provided
as argument to the function.

The function costf must be defined so that the general call to this function is

 [f,g,ind]=costf(x,ind)

The function costf is a function which returns f = f(x), i.e., the value of cost (or objective)
function at x, and g = gradient vector of cost function at x. The variable ind is used by
function optim. If ind=1, function costf produces no return. If ind=2, function costf must
provide f as a result. If ind=3, function costf must return the gradient g, and if ind=4, function
costf must return both f and g.

Application of function optim

We will try to minimize the function

f(x1,x2,x3) = {(x1-a1)
2 + (x2-a2)

2
 + (x3-a3)

2}1/2,

Download at InfoClearinghouse.com 14 © 2001 Gilberto E. Urroz

whose gradient is given by

g(x1,x2,x3) = [(x1-a1),(x2-a2),(x3-a3)]/{(x1-a1)
2 + (x2-a2)

2
 + (x3-a3)

2}1/2
.

We use the expressions in functions f and g to define function costf, as follows:

-->deff('[f,g,ind]=costf(x,ind)', ['f=norm(x-a)','g=(x-a)/f'])

The simplest call possible for function optim is:

-->[fopt,xopt] = optim(costf,x0)
 xopt =

! 2. !
! 3. !
! - 2. !
 fopt =

 1.271E-12

Specifying the method of solution

Function optim can use a third argument specifying the algorithm used for the solution.
Possible values for this argument are ‘qn’ for quasi-Newton method, ‘gc’ for conjugate
gradient, and ‘nd’ for non-differentiable method. The following call to optim uses the quasi-
Newton method:

-->[fopt,xopt] = optim(costf,x0,'qn')
 xopt =

! 2. !
! 3. !
! - 2. !
 fopt =

 1.271E-12

Obtaining the function gradient at the optimum point

The call to function optim can be modified to include a third value gopt representing the
gradient of the function at the optimal value xopt:

-->[fopt,xopt,gopt]=optim(costf,x0)
 gopt =

! - .2181594 !
! - .8261763 !
! .5194605 !
 xopt =

! 2. !
! 3. !
! - 2. !
 fopt =

Download at InfoClearinghouse.com 15 © 2001 Gilberto E. Urroz

 1.271E-12

Obtaining a work vector for quasi-Newton method

You can also get back from function optim a work array (work) that can be used for re-starting
calculations in a quasi-Newton method:

-->[fopt,xopt,gopt,work]=optim(costf,x0)
 work =

 column 1 to 5

! 2.838E+11 .1519917 .3348070 6.786E+11 - .0552042 !

 column 6 to 12

! 3.772E+11 0. 0. 0. .2181594 .7930178 - .5487239 !

 column 13 to 19

! 2. 3. - 2. - .2181594 - .8261763 .5194605 .0407068 !

 column 20 to 24

! .5886515 1.0947067 - .2181594 - .8261763 .5194605 !

 gopt =

! - .2181594 !
! - .8261763 !
! .5194605 !
 xopt =

! 2. !
! 3. !
! - 2. !
 fopt =

 1.271E-12

Placing simple constraints on the design variables

Function optim allow for constraints to be placed on the design variables by adding as third
argument the string ‘b’ followed by two arrays representing the lower bound and upper bound
values of the variables. For example, if we restrict the variables to x1 ≥ 0, x2 ≥ 0,, and x3 ≥ 0,
we can use:

-->[fopt,xopt,gopt]=optim(costf,'b',[0;0;0],[1e10;1e10;1e10],x0)
 gopt =

! .1960336 !
! .9804776 !
! .0153146 !

Download at InfoClearinghouse.com 16 © 2001 Gilberto E. Urroz

 xopt =

! 27.60096 !
! 131.04521 !
! 0. !
 fopt =

 2.5495098

Function leastsq

The simplest call to function leastsq is

 [fopt,xopt]=leastsq([imp,] f [,Df],x0)

where imp is an optional argument may take the values imp=0 to allow only error reporting,
imp=1 for initial and final reports, imp=2 adds a report per iteration, and imp>2 add reports on
linear search. Function f is the function to be minimized, Df (optional argument) is the
gradient of the function to be minimized. The argument x0, and the returned values fopt and
xopt are the same as in function optim.

Application of function leastsq

As an example, we minimize the function

f(x1,x2) = x1
3 - 2x1x2x3 + x2

2 + 3x3,
whose gradient is

Df = [3x1
2 - 2x2x3, -2x1x3 + 2x2, -2x1x2 + 3].

First, we define the functions f and Df and an initial value of x:

-->deff('[w]=f(x)','w=x(1)^3-2*x(1)*x(2)*x(3)+x(2)^2+3*x(3)')

-->deff('[w]=Df(x)','w=[3*x(1)^2-2*x(2)*x(3),-2*x(1)*x(3)+2*x(2),-
2*x(1)*x(2)+3]')

-->x0=[1;1;1];

The simplest call to function leastsq is:

-->[fopt,xopt]=leastsq(f,x0)
 xopt =

! - .0370534 !
! .8658123 !
! - .2446280 !

 fopt =

 0.

Download at InfoClearinghouse.com 17 © 2001 Gilberto E. Urroz

Function leastsq using the function’s gradient

The following call to leastsq includes the gradient function:

-->[fopt,xopt]=leastsq(f,Df,x0)
 xopt =

! - .0370533 !
! .8658122 !
! - .244628 !
 fopt =

 0.

Function leastsq with different output options

The following calls to the function introduce the argument imp with different values. The
descriptions following the function call will not show up, in general, in the SCILAB screen, but
they will be sent to a text file if the function diary has activated one such file for output.

-->[fopt,xopt]=leastsq(1,f,x0)
1entree dans n1qn1. dimension du probleme 3, de zm 24
 mode 1 eps= .22E-15 niter= 100 nsim= 100 imp= 1
 n1qn1 9 iters 11 simuls f= .0000000E+00
 sortie de n1qn1. norme gradient carre = .0000000E+00
 norm of projected gradient lower than 0.0000000E+00

 xopt =

! - .0370534 !
! .8658123 !
! - .2446280 !
 fopt =

 0.

With imp=2 information is provided for each iteration in the solution:

-->[fopt,xopt]=leastsq(2,f,x0)
1entree dans n1qn1. dimension du probleme 3, de zm 24
 mode 1 eps= .22E-15 niter= 100 nsim= 100 imp= 2
 n1qn1 1 iters 1 simuls f= .9000000E+01
 n1qn1 2 iters 3 simuls f= .2559197E+01
 n1qn1 3 iters 5 simuls f= .1346007E-02
 n1qn1 4 iters 6 simuls f= .4660886E-03
 n1qn1 5 iters 7 simuls f= .5002594E-07
 n1qn1 6 iters 8 simuls f= .1879045E-11
 n1qn1 7 iters 9 simuls f= .7546736E-20
 n1qn1 8 iters 10 simuls f= .1232595E-31
 n1qn1 9 iters 11 simuls f= .0000000E+00
 sortie de n1qn1. norme gradient carre = .0000000E+00
 norm of projected gradient lower than 0.0000000E+00

 xopt =

! - .0370534 !

Download at InfoClearinghouse.com 18 © 2001 Gilberto E. Urroz

! .8658123 !
! - .2446280 !
 fopt =

 0.

Function leastsq returning function gradient at optimum point

The following call to function leastsq provides not only the optimal solution and the value of
the function at that point, but also the gradient of the function at the optimal point:

-->[fopt,xopt,gopt] = leastsq(f,x0)
gopt =

! 0. !
! 0. !
! 0. !
 xopt =

! - .0370534 !
! .8658123 !
! - .2446280 !
 fopt =

 0.

Specifying the method of solution for function leastsq

You can specify the method to be used, for example, for a quasi-Newton method use:

-->[fopt,xopt] = leastsq(f,x0,'qn')
 xopt =

! - .0370534 !
! .8658123 !
! - .2446280 !
 fopt =

 0.

Function leastsq with upper and lower boundary constraints for the design variables

 Restrictions on the upper and lower limits of the design variables can be specified as in the
following call to the function:

-->[fopt,xopt] = leastsq(1,f,Df,'b',[0;0;0],[10;10;10],x0)
 *********** qnbd ****************
 qnbd : pb dans ajour. mode= -1
 qnbd : indqn= 8
 stop during calculation of estimated hessian

 xopt =

! 0. !
! 1. !
! 0. !

Download at InfoClearinghouse.com 19 © 2001 Gilberto E. Urroz

 fopt =

 1.

In the following call to function leastsq we specify the quasi-Newton method of solution:

-->[fopt,xopt] = leastsq(1,f,Df,'b',[0;0;0],[10;10;10],x0,'qn')
 *********** qnbd ****************
 qnbd : pb dans ajour. mode= -1
 qnbd : indqn= 8
 stop during calculation of estimated hessian

 xopt =

! 0. !
! 1. !
! 0. !
 fopt =

 1.

Exercises

[1]. Minimize the objective function

C = 3.6x1+3.08x2+2.6x3+2.7x4

subject to the constraints:
x1 + x2 ≤ 240
x3 + x4 ≤ 300
x1 + x3 ≤ 200
x2 + x4 ≤ 200

with the design variables being xi ≥ 0, for i = 1,2,3,4.

[2]. Minimize the objective function

C = 3.5x1 + 3.0x2 + 6x3 + 4.8x4 + 1.8x5 + x6

subject to the constraints

x1 + x2 = 800
x3 + x4 = 500
x5 + x6 = 1500

5x1 + 6x3 + 3x5 ≤ 6000
5x2 + 6x4 +3x6 ≤ 8000

with the design variables being xi ≥ 0, for i = 1,2,…,6.

Download at InfoClearinghouse.com 20 © 2001 Gilberto E. Urroz

[3]. Minimize the objective function
C = 0.7x1 + x2 + 0.6x3 + 0.6x4 + 0.8x5 + x6

subject to the constraints

x1 + x4 = 4000
x2 + x5 = 3000
x3 + x6 = 4500

x1 + x3 + x3 ≤ 6000
x4 + 6x5 +x6 ≤ 8000

with the design variables being xi ≥ 0, for i = 1,2,…,6.

[4]. It is required to build an open-top parallelepipedal container for the transportation of sand
in a construction operation. The construction costs for building the container are:

• Sides: $50/ft2

• Ends: $60/ft2

• Bottom: $90/ft2

Salvage value = 10% of construction cost
Useful life = 15 years
Yearly maintenance = $15/ft2 of outside surface area
Minimum volume needed = 150 ft3

Interest rate = 8.5% per year

The problem is to determine the container dimensions (x1,x2,x3) for minimum cost. Formulate
the problem and find the container dimensions.

[5]. It is necessary to design a trapezoidal cross-section channel with a flow cross-sectional
area of 150 ft2. To minimize the construction costs the amount of excavated material should
be equal to the material used to build the dykes of area A3/2, each, on both ends of the cross-
section. Formulate the problem to minimize the excavated area A1 if z = 1. Notice that the
design allows for a 1-ft freeboard elevation and that the crest of the dykes is 2-ft long. Solve
the problem for the values of y1, y2, and w that minimize A1.

Download at InfoClearinghouse.com 21 © 2001 Gilberto E. Urroz

[6]. Minimize the objective function

C = (x1-3)2 + (x2-3)2

subject to x1 + x2 ≤ 4, x1 ≥ 0, and x2 ≥ 0.

[7]. Maximize the objective function

C = x1 + x2 + 2x3

subject to 3x2 - 2x3 = 6, 1 ≤ x1 ≤ 4, x2 ≥ 0, and -1 ≤ x3 ≤ 2.

[8]. Identify a matrix associated with the quadratic form

Q = x1
2 + 4x1x2 + 2x1x3 - 7x2

2 - 6x2x3 + 5x3
2

and determine the unconstrained minimum or maximum for this function.

[9]. Minimize the objective function

C = x1
2 + x2

2 - 2x1 - 2x2 + 2

subject to -2x1 - x2 + 4 ≤ 0.

[10]. Maximize the objective function

C = 2x1 + 5x2 - 4.5x3 + 1.5x4

subject to
5x1 + 3x2 + 1.5x3 ≤ 8

1.8x1 - 6x2 +4x3 + x4 ≥ 3
-3.6x1 + 8.2x2 + 7.5x3 + 5x4 = 15

xi ≥ 0, i=1,2,3,4.

[11]. Minimize the objective function

C = 8x1 - 3x2 + 15x3

subject to
5x1 - 1.8x2 -3.6x3 ≥ 2
3x1 + 6x2 + 8.2x3 ≥ 5

-3.6x1 + 8.2x2 + 7.5x3 + 5x4 = 15
-3.6x1 + 8.2x2 + 7.5x3 + 5x4 = 15

x1 ≥ 0, x2 ≥ 0,
no restriction on sign for x3

Download at InfoClearinghouse.com 22 © 2001 Gilberto E. Urroz

REFERENCES (for all SCILAB documents at InfoClearinghouse.com)

Abramowitz, M. and I.A. Stegun (editors), 1965,"Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables," Dover Publications, Inc., New York.

Arora, J.S., 1985, "Introduction to Optimum Design," Class notes, The University of Iowa, Iowa City, Iowa.

Asian Institute of Technology, 1969, "Hydraulic Laboratory Manual," AIT - Bangkok, Thailand.

Berge, P., Y. Pomeau, and C. Vidal, 1984,"Order within chaos - Towards a deterministic approach to turbulence," John
Wiley & Sons, New York.

Bras, R.L. and I. Rodriguez-Iturbe, 1985,"Random Functions and Hydrology," Addison-Wesley Publishing Company,
Reading, Massachussetts.

Brogan, W.L., 1974,"Modern Control Theory," QPI series, Quantum Publisher Incorporated, New York.

Browne, M., 1999, "Schaum's Outline of Theory and Problems of Physics for Engineering and Science," Schaum's
outlines, McGraw-Hill, New York.

Farlow, Stanley J., 1982, "Partial Differential Equations for Scientists and Engineers," Dover Publications Inc., New
York.

Friedman, B., 1956 (reissued 1990), "Principles and Techniques of Applied Mathematics," Dover Publications Inc., New
York.

Gomez, C. (editor), 1999, “Engineering and Scientific Computing with Scilab,” Birkhäuser, Boston.

Gullberg, J., 1997, "Mathematics - From the Birth of Numbers," W. W. Norton & Company, New York.

Harman, T.L., J. Dabney, and N. Richert, 2000, "Advanced Engineering Mathematics with MATLAB® - Second edition,"
Brooks/Cole - Thompson Learning, Australia.

Harris, J.W., and H. Stocker, 1998, "Handbook of Mathematics and Computational Science," Springer, New York.

Hsu, H.P., 1984, "Applied Fourier Analysis," Harcourt Brace Jovanovich College Outline Series, Harcourt Brace
Jovanovich, Publishers, San Diego.

Journel, A.G., 1989, "Fundamentals of Geostatistics in Five Lessons," Short Course Presented at the 28th International
Geological Congress, Washington, D.C., American Geophysical Union, Washington, D.C.

Julien, P.Y., 1998,”Erosion and Sedimentation,” Cambridge University Press, Cambridge CB2 2RU, U.K.

Keener, J.P., 1988, "Principles of Applied Mathematics - Transformation and Approximation," Addison-Wesley
Publishing Company, Redwood City, California.

Kitanidis, P.K., 1997,”Introduction to Geostatistics - Applications in Hydogeology,” Cambridge University Press,
Cambridge CB2 2RU, U.K.

Koch, G.S., Jr., and R. F. Link, 1971, "Statistical Analysis of Geological Data - Volumes I and II," Dover Publications,
Inc., New York.

Korn, G.A. and T.M. Korn, 1968, "Mathematical Handbook for Scientists and Engineers," Dover Publications, Inc., New
York.

Kottegoda, N. T., and R. Rosso, 1997, "Probability, Statistics, and Reliability for Civil and Environmental Engineers,"
The Mc-Graw Hill Companies, Inc., New York.

Kreysig, E., 1983, "Advanced Engineering Mathematics - Fifth Edition," John Wiley & Sons, New York.

Lindfield, G. and J. Penny, 2000, "Numerical Methods Using Matlab®," Prentice Hall, Upper Saddle River, New Jersey.

Magrab, E.B., S. Azarm, B. Balachandran, J. Duncan, K. Herold, and G. Walsh, 2000, "An Engineer's Guide to
MATLAB®", Prentice Hall, Upper Saddle River, N.J., U.S.A.

McCuen, R.H., 1989,”Hydrologic Analysis and Design - second edition,” Prentice Hall, Upper Saddle River, New Jersey.

Download at InfoClearinghouse.com 23 © 2001 Gilberto E. Urroz

Middleton, G.V., 2000, "Data Analysis in the Earth Sciences Using Matlab®," Prentice Hall, Upper Saddle River, New
Jersey.

Montgomery, D.C., G.C. Runger, and N.F. Hubele, 1998, "Engineering Statistics," John Wiley & Sons, Inc.

Newland, D.E., 1993, "An Introduction to Random Vibrations, Spectral & Wavelet Analysis - Third Edition," Longman
Scientific and Technical, New York.

Nicols, G., 1995, “Introduction to Nonlinear Science,” Cambridge University Press, Cambridge CB2 2RU, U.K.

Parker, T.S. and L.O. Chua, , "Practical Numerical Algorithms for Chaotic Systems,” 1989, Springer-Verlag, New York.

Peitgen, H-O. and D. Saupe (editors), 1988, "The Science of Fractal Images," Springer-Verlag, New York.

Peitgen, H-O., H. Jürgens, and D. Saupe, 1992, "Chaos and Fractals - New Frontiers of Science," Springer-Verlag, New
York.

Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, 1989, “Numerical Recipes - The Art of Scientific
Computing (FORTRAN version),” Cambridge University Press, Cambridge CB2 2RU, U.K.

Raghunath, H.M., 1985, "Hydrology - Principles, Analysis and Design," Wiley Eastern Limited, New Delhi, India.

Recktenwald, G., 2000, "Numerical Methods with Matlab - Implementation and Application," Prentice Hall, Upper
Saddle River, N.J., U.S.A.

Rothenberg, R.I., 1991, "Probability and Statistics," Harcourt Brace Jovanovich College Outline Series, Harcourt Brace
Jovanovich, Publishers, San Diego, CA.

Sagan, H., 1961,"Boundary and Eigenvalue Problems in Mathematical Physics," Dover Publications, Inc., New York.

Spanos, A., 1999,"Probability Theory and Statistical Inference - Econometric Modeling with Observational Data,"
Cambridge University Press, Cambridge CB2 2RU, U.K.

Spiegel, M. R., 1971 (second printing, 1999), "Schaum's Outline of Theory and Problems of Advanced Mathematics for
Engineers and Scientists," Schaum's Outline Series, McGraw-Hill, New York.

Tanis, E.A., 1987, "Statistics II - Estimation and Tests of Hypotheses," Harcourt Brace Jovanovich College Outline
Series, Harcourt Brace Jovanovich, Publishers, Fort Worth, TX.

Tinker, M. and R. Lambourne, 2000, "Further Mathematics for the Physical Sciences," John Wiley & Sons, LTD.,
Chichester, U.K.

Tolstov, G.P., 1962, "Fourier Series," (Translated from the Russian by R. A. Silverman), Dover Publications, New York.

Tveito, A. and R. Winther, 1998, "Introduction to Partial Differential Equations - A Computational Approach," Texts in
Applied Mathematics 29, Springer, New York.

Urroz, G., 2000, "Science and Engineering Mathematics with the HP 49 G - Volumes I & II", www.greatunpublished.com,
Charleston, S.C.

Urroz, G., 2001, "Applied Engineering Mathematics with Maple", www.greatunpublished.com, Charleston, S.C.

Winnick, J., , "Chemical Engineering Thermodynamics - An Introduction to Thermodynamics for Undergraduate
Engineering Students," John Wiley & Sons, Inc., New York.

	Optimization using SCILAB
	Definitions
	Graphical solution
	Linear programming
	SCILAB function for solving linear programming problems
	Applications of function linpro - case 1: inequality constraints and bounds present
	Applications of function linpro - case 2: inequality constraints and bounds present
	Graphical illustration of linear programming solution
	Lagrange multipliers
	What are Lagrange multipliers?

	Quadratic programming
	SCILAB function for solving quadratic programming problems
	An application of function quapro

	SCILAB non-linear programming functions
	Function optim
	Application of function optim
	Specifying the method of solution
	Obtaining the function gradient at the optimum point
	Obtaining a work vector for quasi-Newton method
	Placing simple constraints on the design variables

	Function leastsq
	Application of function leastsq
	Function leastsq using the function’s gradient
	Function leastsq with different output options
	Function leastsq returning function gradient at optimum point
	Specifying the method of solution for function leastsq
	Function leastsq with upper and lower boundary constraints for the design variables

	Exercises

	REFERENCES (for all SCILAB documents at InfoClearinghouse.com)

