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Matrix applications
In this section we explore some applications of matrices in the physical sciences.

Electric circuits
Consider the simple electrical circuit shown in the figure below.

Given the values of the electric resistance, R1 = R3 = R5 = R7 = 1.5 kΩ, R2 = R4 = R6 = R8 = 800 Ω,
and the known steady voltages V1 = 12 V, V2 = 24 V.  We are asked to determine the electrical
currents I1, I2, and I3, associated with the circulation loops shown in the figure.

The circulation loops shown pre-determine for us a preferred direction in each loop to write
Kirchoff law of voltage in a closed loop.  Basically, we start at a node in the circuit and move
around a given loop subtracting voltages R⋅I if the current is in the same direction as the loop
direction, or adding voltages if the current and the loop directions are opposite.  When
encountering a voltage source, the voltage from the source is added or subtracted according to
the orientation of the voltage source with respect to the loop circulation direction.  We stop
back at the same node were we started to complete the voltage equation for a given loop.

For the case shown in the figure we can write:

I1:           -R1⋅I1 –R2⋅I1- R3⋅ (I1 – I2) – V1 = 0
I2:           -R4⋅I2 –R5⋅I2 –R6⋅ (I2 – I3) –R3⋅ (I2-I1)=0
I3:            -V2 –R8⋅I3 – R7⋅I3 – R6⋅I3 = 0

Replacing the values of the resistances and voltage sources:

I1:           -1500⋅I1 – 800⋅I1- 1500⋅ (I1 – I2) – 12 = 0
I2:           -800⋅I2 –1500⋅I2 – 800⋅ (I2 – I3) –1500⋅ (I2-I1)=0
I3:            -24 –800⋅I3 – 1500⋅I3 – 800⋅(I3 – I2) = 0

Algebraic manipulation of the equations reduce them to the following system of linear
equations:

-3800I1+1500I2              = 12
 1500I1- 4600I2+   800I3  = 0
              800I2 - 3100I3  = 24
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This system can be written as a matricial system:
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A solution can be obtained by using left division, an inverse matrix, or function linsolve.  The
three methods are illustrated below:

 -->A=[-3800,1500,0;1500,-4600,800;0,800,-3100]
 A  =

! - 3800.    1500.    0.    !
!   1500.  - 4600.    800.  !
!   0.       800.   - 3100. !

-->b = [12;0;24]
 b  =

!   12. !
!   0.  !
!   24. !

Using left division:

-->x = A\b
 x  =

! -  .0042929 !
! -  .0028753 !
! -  .0084840 !

Using the inverse of matrix A:

-->x = inv(A)*b
 x  =

! -  .0042929 !
! -  .0028753 !
! -  .0084840 !

Using linsolve:

-->c = -b
 c  =

! - 12. !
!   0.  !
! - 24. !

-->x = linsolve(A,c)
 x  =

! -  .0042929 !
! -  .0028753 !
! -  .0084840 !
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Regardless of the method used to obtain the solution, the final results are:

I1 = -0.0042929 A = -4.2929 mA, I2 = -0.0028753 A = -2.8753 mA, I3 = -0.0084840 A = 8.484 mA.

__________________________________________________________________________________

Structural mechanics

Consider the truss structure shown in the figure below.  Horizontal and vertical bars are of
length 1.0 m, and diagonal bars 1.4142 m.  All acute angles in the truss are 45o.

By isolating each node, as shown in the figure below, we can write the following equations for
node equilibrium (i.e., ΣFx = 0, ΣFy = 0):

F2 + F1 cos 45o
 = 0,

25 + F1 sin 45o = 0,
-F2 + F6 = 0,
-5 + F3 = 0,

F4 – F1 cos 45o+ F5 cos 45o = 0,
-20 – F3 – F1 cos 45o – F5 cos 45o =0,

-F4 + F7 cos 45o = 0,
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-15 – F8 – F7 cos 45o  = 0,
-F6 + F9 – F5 cos 45o = 0,
-10 + F8 + F5 cos 45o = 0,

-F9 – F7 cos 45o = 0,
25 + F7 cos 45o  = 0.

With sin 45o = cos 45o = 0.866, then  we have:

0.866 F1 + F2 = 0
0.866 F1 = -25

-F2 + F6 = 0
F3 = 5

-0.866F1 +F4 +0.866F5

= 0
-0.866F1 -F3 -0.866F5

=20
 -F4 + 0.866F7 = 0

-0.866F7 – F8 = 15
-0.866F5  – F6 + F9 = 0
 0.866F5 +F8

=10
-0.866F7 – F9 = 0
0.866 F7 = -25

We have a total of 12 equations with 9 unknowns.  The system is over-determined, so we
choose, arbitrarily, the first 9 equations:

0.866 F1 + F2 = 0
0.866 F1 = -25

-F2 + F6 = 0
F3 = 5

-0.866F1 +F4 +0.866F5

= 0
-0.866F1 -F3 -0.866F5

=20
-F4 + 0.866F7 = 0

-0.866F7 – F8 = 15
-0.866F5  – F6 + F9 = 0

Writing the system as a matrix equation:
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The coefficient matrix for this problem is a sparse matrix.  To solve this problem using SCILAB
we need to load vectors containing the indices and the values of the non-zero elements of the
matrix A, i.e.,

-->index =
[1,1;1,2;2,1;3,2;3,6;4,3;5,1;5,4;5,5;6,1;6,3;6,5;7,4;7,7;8,7;8,8;9,5;9,6;9,9];

-->values = [0.866,1,0.866,-1,1,1,-0.866,1,0.866,-0.866,-1,-0.866,-1,0.866,-
0.866,-1,-0.866,-1,1];

-->dim = [9,9];

To check that the dimensions of the matrix index and vector values are compatible use the
function size

-->size(index), size(values)
 ans  =

!   19.    2. !
 ans  =

!   1.    19. !

Next, we create the matrix of coefficients A as a sparse matrix:

-->A = sparse(index,values,dim);

The full matrix can be seen by using:

-->full(A)
 ans  =

!    .866    1.    0.    0.    0.       0.    0.       0.    0. !
!    .866    0.    0.    0.    0.       0.    0.       0.    0. !
!   0.     - 1.    0.    0.    0.       1.    0.       0.    0. !
!   0.       0.    1.    0.    0.       0.    0.       0.    0. !
! -  .866    0.    0.    1.     .866    0.    0.       0.    0. !
! -  .866    0.  - 1.    0.  -  .866    0.    0.       0.    0. !
!   0.       0.    0.  - 1.    0.       0.     .866    0.    0. !
!   0.       0.    0.    0.    0.       0.  -  .866  - 1.    0. !
!   0.       0.    0.    0.  -  .866  - 1.    0.       0.    1. !

Next, we define the right-hand side vector:

-->b = full(sparse(indexb,valuesb,dimb));

-->b
 b  =

!   0.  !
! - 25. !
!   0.  !
!   5.  !
!   0.  !
!   20. !
!   0.  !
!   15. !
!   0.  !
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The solution to the system is:

-->x = lusolve(A,b)
 x  =

! - 28.86836 !
!   25.      !
!   5.       !
! - 25.      !
!   0.       !
!   25.      !
! - 28.86836 !
!   10.      !
!   25.      !

i.e.,

F1 =-28.87 kN, F2 = 25 kN, F3 = 5 kN,
F4 = -25 kN, F5 = 0 kN, F6 = 25 kN,

F7 = -28.87 kN, F8 = 10 kN, F9 = 25 kN.

Dimensionless numbers in fluid mechanics

Dimensional analysis is a technique used in fluid mechanics, and other sciences, to reduce the
number of variables involved in an experiment by creating dimensionless numbers that
combine the original set of variables.   In order to obtain these dimensionless numbers, we
make use of the principle of dimensional homogeneity, which basically states that an equation
derived from conservation laws and material properties should have the same dimensions on
both sides of the equation.  For example, the equation for the distance traveled by a projectile
dropped from rest at a certain elevation above the ground is given by d = ½ gt2,  where g =
9.806 m/s2, is the acceleration of gravity, and t is the time in seconds.   The distance d is given
in meters.  Instead of dealing with units, we refer to three (sometimes more) fundamental
dimensions: length (L), time (T), and mass (M).   We use brackets to refer to the dimensions of
a quantity, thus, [d] = L, g = [LT-2], and t = [T].   Replacing dimensions in the formula for d we
have:

[d] = [1/2][g][t]2 = 1⋅LT-2⋅T2
 = L,

as expected.  Thus, we say that the equation d = ½ gt2 is dimensionally homogeneous.

Suppose that we have an experiment that involves the following variables (showed with their
dimensions attached):

D = a diameter (L)
V = a flow velocity (LT-1)
ν = kinematic viscosity of the fluid (L2T-1)
ρ = density of the fluid (ML-3)
E = bulk density of the fluid (ML-1T-2)
σ = surface tension of the fluid (MT-2)
∆p = a characteristic pressure drop in the flow (ML-1T-2)
g = acceleration of gravity (LT-2)
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There are m = 8 variables which need n = 3 dimensions to be expressed (i.e., L, T, and M).
Buckingham’s Π theorem indicates that you can form r = m – n = 8 – 3 = 5 dimensionless
parameters.   The technique consists in selecting one geometric variable, in this case we have
no choice but to select D, the only variable that represents geometry alone; a kinematic
variable, V (you can also choose ν), i.e., a variable involving length and time; and, finally, a
dynamic variable, say ρ, i.e., a variable involving length, time, and mass.  These three
variables, D, V and ρ, become repeating variables, i.e., variables that will participate in each
of the dimensionless parameters to be formed.  Each dimensionless parameter ,or Π number, is
formed by multiplying the repeating variables raised to a certain unknown power and
multiplying one of the remaining variables.  For example, we can form for this case the
following Π parameters:

Π1 = ρx⋅Dy⋅Vz⋅ν,

Π2 = ρx⋅Dy⋅Vz⋅E,

Π3 = ρx⋅Dy⋅Vz⋅σ,

Π4 = ρx⋅Dy⋅Vz⋅∆p,

Π5 = ρx⋅Dy⋅Vz⋅g.

Since the Π numbers are dimensionless, we can write [Π i] = L0⋅T0⋅M0, for i = 1,2, 3, 4, 5.
Replacing the dimensions of the variables involved in each dimensionless parameters we can
write, for example, for Π1:

L0⋅T0⋅M0 = (ML-3)x⋅(L)y⋅( LT-1)z⋅( L2T-1) = (L)–3x+y+z+2⋅(T) – z – 1 ⋅ (M) x,

From which we get the following equations:

–3x+y+z+2 = 0
           –z – 1= 0
   x                = 0

Or,

If we replace the dimensions of the non-repeating variables in the remaining Π parameters, we
can expand the matrix equation shown above to read:

So, the independent vector b has become a matrix B, and we can write the matrix equation A⋅X
= B.  The columns of B are the negatives of the exponents of the dimensions, L, T, and M, in
that order, of each of the non-repeating variables as shown in the Π parameters that we set
up.
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To solve for the variables x,y,z for each parameter using SCILAB, we propose using function
gausselimd:

-->A = [-3,1,1;0,0,-1;1,0,0]
 A  =

! - 3.    1.    1. !
!   0.    0.  - 1. !
!   1.    0.    0. !

-->B = [-2,1,0,1,-1;1,2,2,2,2;0,-1,-1,-1,0]
 B  =

! - 2.    1.    0.    1.  - 1. !
!   1.    2.    2.    2.    2. !
!   0.  - 1.  - 1.  - 1.    0. !

-->getf('gausselimd')

-->[x,detA]=gausselimd(A,B)
 detA  =

    1.
 x  =

!   0.  - 1.  - 1.  - 1.    0. !
! - 1.    0.  - 1.    0.    1. !
! - 1.  - 2.  - 2.  - 2.  - 2. !

The result is the matrix

each column representing the values of x,y,z, for the repeating variables in each of the
dimensionless parameters, thus we have:

Π1 = ρ0⋅D-1⋅V-1⋅ν = ν/DV,

Π2 = ρ-1⋅D0⋅V-2⋅E = E/ρV2,

Π3 = ρ-1⋅D-1⋅V-2⋅σ  = σ/ρDV2

Π4 = ρ-1⋅D0⋅V-2⋅∆p = ∆p/ρV2,

Π5 = ρ0⋅D1⋅V-2⋅g = gD/V2.

Note: if you don’t want to use function gausselimd you can use, for example, left-division:

-->A\B
 ans  =

!   0.  - 1.  - 1.  - 1.    0. !
! - 1.    0.  - 1.    0.    1. !

,
22221

10101
01110

















−−−−−
−−

−−−
=X



Download at InfoClearinghouse.com 10                                  © 2001 - Gilberto E. Urroz

! - 1.  - 2.  - 2.  - 2.  - 2. !

Or, a Gauss-Jordan elimination with function rref:

-->A_aug = [A B]
 A_aug  =

! - 3.    1.    1.  - 2.    1.    0.    1.  - 1. !
!   0.    0.  - 1.    1.    2.    2.    2.    2. !
!   1.    0.    0.    0.  - 1.  - 1.  - 1.    0. !

-->rref(A_aug)
 ans  =

!   1.    0.    0.    0.  - 1.  - 1.  - 1.    0. !
!   0.    1.    0.  - 1.    0.  - 1.    0.    1. !
!   0.    0.    1.  - 1.  - 2.  - 2.  - 2.  - 2. !

Stress at a point in a solid in equilibrium

Consider a solid body in equilibrium under the action of a system of forces and moments, as
illustrated in the figure below.  If we were to make an imaginary cut through the solid body, so
that we can separate it into two parts at section S.

The effect of the part that we remove to the right of the cut surface S is replaced by the force
F, which in turn can be decomposed into a normal component, FN, and a shear or tangential
component FS.

Suppose now that we isolate a small particle off this solid body, and we do it by cutting the
body with four planes so that we can draw the particle as shown in the left-hand side of the
figure below.
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Three of the planes are chose to be perpendicular to each other so that they help us identify a
Cartesian coordinate system (x1, x2, x3) as shown above.   The surface S, limiting the particle
from above, has a normal unit vector n = [cos α1, cos α2, cos α3], where cos α1, cos α2, and cos
α3 are the direction cosines of n.  The other three surfaces limiting the particle are S1, S2, and
S3, where the sub-index indicates the axis that is normal to the surface.  The effect of the solid
body on this particle is represented by the forces F, F1, F2, and F3, acting, respectively, upon
surfaces S, S1, S2, and S3.  Let the areas corresponding to each surface S, S1, S2, and S3 be given
by A, A1, A2, and A3.  It is possible to show, from the geometry of the figure, that

A1 = A⋅cos α1, A2 = A⋅cos α2, and A3 = A⋅cos α3.

The force F on surface S can be decomposed into a normal component,

FN = FN⋅n = FN⋅[cos α1, cos α2, cos α3] = FN⋅( cos α1⋅ e1 + cos α2⋅e2 + cos α3⋅e3) = FN⋅cos αj⋅ej, (*)

(*) using Einstein’s repeated index convention.

and a shear component,

FS = F – FN,

as shown in the figure above.   The vectors are the unit vectors corresponding to the three
coordinate directions.

The forces on surfaces S1, S2, and S3 can be written in terms of the stress components, σij,
shown in the figure below, as

Fi = [-σi1, -σi2, -σi3] ⋅Ai = (-σi1⋅e1 - σi2⋅e2 - σi3⋅e3)⋅Ai = (-σi1⋅e1 - σi2⋅e2 - σi3⋅e3)⋅A⋅cos αi (i = 1,2,3).

Using Einstein’s repeated index convention we can write
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Fi = [-σi1, -σi2, -σi3] ⋅Ai = -σij⋅ej ⋅Ai = -σ ij⋅ej⋅ A⋅cos αi (i = 1,2,3).

The sub-indices identifying each stress components are chosen so that the first sub-index
represents the sub-index of the axis normal to the surface of interest, and the second
represents the direction along which the stress acts.

Stresses with the same sub-index, σii (i = 1,2,3) act normal to the appropriate surface and are
known as normal stresses.   The other two components on each of the surfaces S1, S2, and S3,
are known as shear stresses, i.e., σij, i≠j.   The direction of action as shown in the figure below
is the conventional way to represent the stresses, namely, the stresses are positive when acting
in the negative coordinate directions, so that the resulting forces have a negative sign, as
shown in the equation above.

The stress components illustrated in the figure above can be written as a matrix known as the
stress tensor,

The set up of the Cartesian coordinate system and the stresses in the particle under
consideration can be used to define the stress condition at a point in the limit when the
dimensions of the particle tend to zero.  Under such conditions you can prove that the stress
tensor is symmetric, i.e., σij = σji.  Therefore, to define completely the state of stress at a
point we need only to know the three normal stresses and three of the shear stresses.

For the equilibrium of force on the particle we can write

.
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F + ΣFi = F + Σ(-σ ij⋅ej⋅ A⋅cos αi) = 0, or F = σ ij⋅ej⋅ A⋅cos αi

[using Einstein’s convention, with both i and j repeated]

If we let
F = σσσσ⋅A,

where s is the stress vector on surface S, and replace this value in the previous equation we get

σσσσ = σ ij ⋅ cos αi ⋅ej = cos αi ⋅ ej ⋅ σ ij = n⋅T

To find the magnitude of the normal component of the stress vector, i.e., the projection of the
stress σσσσ along the unit normal vector n, we use

σn = σσσσ ••••  n / |n| = σ σ σ σ ••••  n =(σ ij⋅cos αi ⋅ej) ••••  (cos αk⋅ek) =σ ij⋅cos αi⋅cos αk⋅( ej ••••  ek).

We can prove that for the unit vectors in the Cartesian coordinate system,

ej ••••  ek = δjk,

where δjk is Dirac’s delta function.  Thus, the normal component of the stress on surface S is

σn =σ ij⋅cos αi⋅cos αk⋅δjk

Since the product indicated in this expression is zero if j≠k, then the only terms surviving are
those for which j = k, i.e.,

σn =σ ij⋅cos αi⋅cos αj = cos αj⋅σ ij⋅cos αi.

You can prove that this latter result can be written in vector and matrix notation as the
quadratic form

σn = n⋅T⋅nT
 ,

where

n = cos αj⋅ej.

Thus, the normal stress magnitude can be written as a quadratic form for any normal unit
vector n = nj⋅ej, written as a row vectors, with nj = cos αj, j = 1, 2, 3.   Also, the normal stress
as a vector will be written as

σσσσn = σn⋅ n = (n⋅T⋅nT) ⋅ n

The normal force is given by

FN = σσσσn⋅A = (σn⋅A)⋅n.

The shear force can be written in terms of shear stress on surface S, FS = F – FN = σσσσS⋅A, so that

σσσσS = σσσσ – σσσσn.
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Example:

Let the stress at a point be given by

Determine the total stress σσσσ, the normal stress σσσσn, and shear stress σσσσS, if the surface S has a
normal unit vector n = [0.5 0.25 0.8292].  What are the total force F, the normal force Fn, and
the shear force FS, if the surface S has an area of  0.00001 m2

Solution:

To calculate the total stress we use

This result can be obtained by using SCILAB as follows:

-->T = [25,-10,20;-10,30,15;20,15,40], n = [0.5,0.25,0.829]
 T  =

!   25.  - 10.    20. !
! - 10.    30.    15. !
!   20.    15.    40. !
 n  =

!    .5     .25     .829 !

-->sigma = T*n'
 sigma  =

!   26.58  !
!   14.935 !
!   46.91  !

To calculate the normal stress, use:

Using SCILAB:

-->sigma_n = n*T*n'
 sigma_n  =

Pa⋅
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    55.91214

The result is                                         σn = 55.93 Pa.

The shear stress is given by

   σ   σ   σ   σS = σσσσ – σσσσn,

or, using SCILAB:

-->sigma_s = sigma - sigma_n*n'
 sigma_s  =

! - 1.37607   !
!    .956965  !
!    .5588359 !

The forces can be calculated by multiplying the stresses times the area of the surface S, i.e., F
= σσσσ⋅A, Fn = σσσσn⋅A, and Ft = σσσσt⋅A.  Using Maple, the forces are calculated as:

-->A = 0.00001
 A  =

     .00001

-->Fn = sigma_n*n'*A
 Fn  =

!    .0002796 !
!    .0001398 !
!    .0004635 !

-->Ft = sigma_s*A
 Ft  =

! -  .0000138 !
!    .0000096 !
!    .0000056 !

-->F = sigma*A
 F  =

!    .0002658 !
!    .0001494 !
!    .0004691 !

In paper, these forces are written as

Fn = (2.79i +1.39j+4.63k)×10-4 N,
Fs = (-1.38i +0.96j+0.54k)×10-5 N,
F  = (2.66i +1.49j+4.69k)×10-4 N.

Principal stresses at a point
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Given the stress tensor T representing the state of stress at a point P in a Cartesian coordinate
system (x1, x2, x3), suppose that you want to find the normal vector, or vectors, n for which the
stress is only in the normal direction.  In other words, we are trying to find n and σn such that

T⋅n = σn⋅n.

This equation is the eigenvalue equation for the matrix T with eigenvalues σn and eigenvectors
n.

Recall that this equation can be written also as

(T – σn⋅I) ⋅n = 0,

which has non-trivial solution if

det(T – σn⋅I) = 0.

For the previous example, we can write

To obtain the eigenvalues and eigenvectors of T we use function eigenvectors in SCILAB:

-->getf('eigenvectors')

-->[x,sigm] = eigenvectors(T)
 sigm  =

!   1.1203785    37.800525    56.079096 !
 x  =

! -  .6673642  -  .6009826     .4398237 !
! -  .5119885     .7991229     .3150721 !
!    .5408260     .0149168     .8410022 !

In paper we would write:

n1 = [-0.667 -0.512 0.541], (σn)1 = 1.12,
n2 = [-0.601  0.800  0.015], (σn)2 = 37.80,

n3 =[0.440 0.315 0.841], (σn)3 = 56.08.

The three normal stresses found are known as the principal stresses at the point.  The
eigenvalues represent the normal vectors to the surfaces where those principal stresses act.
These directions are known as the principal axes.

⋅=
−
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−−

=⋅− 0
401520

153010
201025
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n

n

n

σ
σ

σ
σ IT



Download at InfoClearinghouse.com 17                                  © 2001 - Gilberto E. Urroz

Multiple linear fitting

Consider a data set of the form

x1 x2 x3 … xn y
x11 x21 x31 … xn1 y1

x12 x22 x32 … xn2 y2

x13 x32 x33 … xn3 y3

. . . . .

. . . . . .
x1,m-1 x 2,m-1 x 3,m-1 … x n,m-1 ym-1

x1,m x 2,m x 3,m … x n,m ym

Suppose that we search for a data fitting of the form

y = b0 + b1⋅x1 + b2⋅x2 + b3⋅x3 + … + bn⋅xn.

You can obtain the least-square approximation to the values of the coefficients

b = [b0   b1  b2  b3 … bn],

by putting together the matrix X
  _           _

1 x11 x21 x31 … xn1

1 x12 x22 x32 … xn2

1 x13 x32 x33 … xn3

. . . . .

. . . . . .
1 x1,m x 2,m x 3,m … x n,m

  _          _

Then, the vector of coefficients is obtained from

b = (XT⋅X)-1⋅XT⋅y,

where y is the vector

y = [y1 y2 … ym]T.

For example, use the following data to obtain the multiple linear fitting

y = b0 + b1⋅x1 + b2⋅x2 + b3⋅x3,

x1 x2 x3 y
1.20 3.10 2.00 5.70
2.50 3.10 2.50 8.20
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3.50 4.50 2.50 5.00
4.00 4.50 3.00 8.20
6.00 5.00 3.50 9.50

With SCILAB you can proceed as follows:

First, enter the vectors x1, x2, x3, and y, as row vectors:

->x1 = [1.2,2.5,3.5,4.0,6.0]
 x1  =

!   1.2    2.5    3.5    4.    6. !

-->x2 = [3.1,3.1,4.5,4.5,5.0]
 x2  =

!   3.1    3.1    4.5    4.5    5. !

-->x3 = [2.0,2.5,2.5,3.0,3.5]
 x3  =

!   2.    2.5    2.5    3.    3.5 !

-->y = [5.7,8.2,5.0,8.2,9.5]
 y  =

!   5.7    8.2    5.    8.2    9.5 !

Next, we form matrix X and replace y by its transpose:

-->X = [ones(5,1) x1' x2' x3']
 X  =

!   1.    1.2    3.1    2.  !
!   1.    2.5    3.1    2.5 !
!   1.    3.5    4.5    2.5 !
!   1.    4.     4.5    3.  !
!   1.    6.     5.     3.5 !

The vector of coefficients for the multiple linear equation is calculated as:

-->b =inv(X'*X)*X'*y
 b  =

! - 2.1649851 !
! -  .7144632 !
! - 1.7850398 !
!   7.0941849 !

Thus, the multiple-linear regression equation is:

y^ = -2.1649851-0.7144632⋅x1 -1.7850398⋅x2 +7.0941849⋅x3.

This function can be used to evaluate y for values of x given as [x1,x2,x3].  For example, for
[x1,x2,x3] = [3,4,2], construct a vector xx = [1,3,4,2], and multiply xx times b, to obtain y(xx):

-->xx = [1,3,4,2]
 xx  =
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!   1.    3.    4.    2. !

-->xx*b
 ans  =

    2.739836

The fitted values of y corresponding to the values of x1, x2, and x3 from the table are obtained
from y = X⋅b:

-->X*b
 ans  =

!   5.6324056 !
!   8.2506958 !
!   5.0371769 !
!   8.2270378 !
!   9.4526839 !

Compare these fitted values with the original data as shown in the table below:

x1 x2 x3 y y-fitted
1.20 3.10 2.00 5.70 5.63
2.50 3.10 2.50 8.20 8.25
3.50 4.50 2.50 5.00 5.04
4.00 4.50 3.00 8.20 8.23
6.00 5.00 3.50 9.50 9.45

Polynomial fitting

Consider the x-y data set

x y
x1 y1

x2 y2

x3 y3

. .

. .
xn-1 yn-1

xn yn

Suppose that we want to fit a polynomial or order p to this data set.  In other words, we seek a
fitting of the form

y = b0 + b1⋅x + b2⋅x2 + b3⋅x3 + … + bp⋅xp.

You can obtain the least-square approximation to the values of the coefficients
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b = [b0   b1  b2  b3 … bp],

by putting together the matrix X
  _           _

1 x1 x1
2 x1

3 … x1
p-2 x1

 p-1

1 x2 x2
2 x2

3 … x2
 p-2 x2

 p-1

1 x3 x3
2 x3

3 … x3
 p-2 x3

 p-1

. . . . . .

. . . . . . .
1 xn x n

2 xn
3 … x n

 p-2 xn
 p-1

  _            _

Then, the vector of coefficients is obtained from b = (XT⋅X)-1⋅XT⋅y,  where y is the vector y = [y1

y2 … yn]
T.

Earlier on, in this chapter, we defined the Vandermonde matrix corresponding to a vector x =
[x1 x2 … xn] as
                                      _           _

1 x1 x1
2 x1

3 … x1
n-1

1 x2 x2
2 x2

3 … x2
 n-1

1 x3 x3
2 x3

3 … x3
 n-1

. . . . .

. . . . . .
1 xn x n

2 xn
3 … x n

 n-1

              _                                                                             _

Notice that this matrix is similar to the matrix X of interest to the polynomial fitting, but
having only n, rather than (p+1) columns.

We can take advantage of the VANDERMONDE function to create the matrix X if we observe the
following rules:

If p = n-1, X = Vn.
If p < n-1, then we need to remove columns  p+2, …, n-1, n from matrix Vn  to form matrix X.
If p > n-1, then we need to add columns  n+1, …, p-1, p+1, to matrix Vn to form matrix X.

After X is ready, and having the vector y available, the calculation of the coefficient vector b
is the same as in multiple linear fitting (the previous matrix application).

Because we can fit a polynomial of any degree to our data, we need to be able to evaluate the
fitting by checking on a couple of parameters, namely, the sum of squared errors (SSE) and the
correlation coefficient, r.  These parameters are defined as follows:

Given the vectors x and y of data to be fit to the polynomial equation, we form the matrix X
and use it to calculate a vector of polynomial coefficients b.  We can calculate a vector of
fitted data, y’, by using

y’ =  X⋅b.
An error vector is calculated by

e = y – y’.

The sum of square errors is equal to the square of the magnitude of the error vector, i.e.,
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SSE = |e|2 = e••••e = Σ ei
2 = Σ (yi-y’i)

2.

To calculate the correlation coefficient we need to calculate first what is known as the sum of
squared totals, SST, defined as

SST = Σ (yi- y)2,

where  y is the mean value of the original y values, i.e.,

 y = (Σyi)/n.

In terms of SSE and SST, the correlation coefficient is defined by

.1
SST
SSEr −=

This value is constrained to the range –1 < r < 1.  The closer r is to +1 or –1, the better the data
fitting.

The following function, polyfit, takes as input the vectors x and y and the polynomial order p
and returns the coefficients of the polynomial fitting (vector b), the sum of square errors (SSE),
and the correlation coefficient (r):

function [SSE,r,b] = polyfit(xx,yy,p)

//Calculates the polynomial fitting
//y^ = b(1) + b(2)*x + b(3)*x^2 + ... + b(p)*x^p
//given data sets xx, yy, and the polynomial
//degree p.
//Vectors xx and yy are row vectors.

[n m] = size(xx');

getf('vandermonde');

V = vandermonde(xx);   //Get Vandermonde matrix for xx

//Get matrix X for solution
if p == n-1 then
   X = V;
elseif p<n-1 then
   X = V(1:n,1:p+1);
else
  X = V;
  for k = n+1:p+1
      X = [X xx'^k]
  end
end;

//Calculating coefficients b, SSE, and r
b=inv(X'*X)*X'*yy';
yfit = X*b;
err = yy'-yfit;
SSE = err'*err;
ybar = sum(yy)/n;
ybarv = ybar*ones(n,1);
SST = sum((yy'-ybarv)^2);
r = sqrt(1-SSE/SST);
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//end function

As an  example, use the following data to obtain a polynomial fitting with p = 2, 3, 4, 5, 6.

x y
2.30 179.72
3.20 562.30
4.50 1969.11
1.65 65.87
9.32 31220.89
1.18 32.81
6.24 6731.48
3.45 737.41
9.89 39248.46
1.22 33.45

First, we enter:

--> x =[2.30,3.20,4.50,1.65,9.32,1.18,6.24,3.45,9.89,1.22];
-->
y=[179.72,562.30,1969.11,65.87,31220.89,32.81,6731.48,737.41,39248.46,33.45];

To fit the data to polynomials of order p = 2, 3, 4, 5, 6, 7, and 8 we use the following calls to
function polyfit.

-->getf('polyfit')

-->[SSE,r,b] = polyfit(x,y,2)
 b  =

!   4527.7303 !
! - 3958.5178 !
!   742.23219 !
 r  =

     .9971908
 SSE  =

    10731140.

-->[SSE,r,b] = polyfit(x,y,3)
 b  =

! - 998.0541  !
!   1303.2053 !
! - 505.27432 !
!   79.229744 !
 r  =

     .9999768
 SSE  =

    88619.368

-->[SSE,r,b] = polyfit(x,y,4)
 b  =

!   20.917344 !
! - 2.6108313 !
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! - 1.5247295 !
!   6.0491773 !
!   3.5068553 !
 r  =

    1.
 SSE  =

      7.4827578

-->[SSE,r,b] = polyfit(x,y,5)
 b  =

!   19.083718 !
!    .1745033 !
! - 2.9383508 !
!   6.3611564 !
!   3.475986  !
!    .0011220 !
 r  =

    1.
 SSE  =

    7.4140764

-->[SSE,r,b] = polyfit(x,y,6)
 b  =

! - 16.807588 !
!   67.398517 !
! - 48.814654 !
!   21.163051 !
!   1.0603971 !
!    .1930681 !
! -  .0058903 !
 r  =

    1.
 SSE  =

    3.8884213

-->[SSE,r,b] = polyfit(x,y,7)
 warning
 matrix is close to singular or badly scaled.
 results may be inaccurate. rcond =   1.1558E-19

 b  =

!   117.79067 !
! - 237.32895 !
!   218.31856 !
! - 96.918027 !
!   29.689084 !
! - 3.6422545 !
!    .25902   !
! -  .0073389 !
 r  =

    1.
 SSE  =
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    1.2829472

-->[SSE,r,b] = polyfit(x,y,8)
 warning
 matrix is close to singular or badly scaled.
 results may be inaccurate. rcond =   1.7245E-23

 b  =

!   68.081558 !
! - 100.44092 !
!   65.29768  !
! - 6.3024667 !
! - 1.3844292 !
!   2.6919754 !
! -  .4920537 !
!    .0401628 !
! -  .0012344 !
 r  =

     .9999909
 SSE  =

    34695.662

Selecting the best fitting

The following table summarizes the values of r and SSE found for the different polynomial
orders:

p r SSE

2 0.9971908 10731140

3 0.9999768 88619.37

4 1 7.482758

5 1 7.414076

6 1 3.888421

7 1 1.282947
8 0.9999909 34695.66

While the correlation coefficient is very close to 1.0 for all values of p, the values of SSE vary
widely.  The smallest value of SSE corresponds to p = 7.  However, a warning is reported for
values of p = 7 and 8, indicating that the results may be inaccurate.  Thus, we eliminate from
the analysis values for p = 7 and 8.

Discarding those values, the best fitting in terms of the minimum value of SSE is p = 6,
however, there is very little difference in the values of SSE for values of p = 4, 5, or 6 (at least
when compared to those values for p = 2, 3, or 8).   Thus, any of the polynomial degrees p = 4,
5, or 6, will produce a good fitting of the original data.

To visualize the original data and the fitted data, we can use the following function plotpoly,
which calls on function polyfit.  Function plotpoly requires the user to provide the (row)
vectors x and y, as well as the polynomial degree p.   During execution, plotpoly requests from
the user the number of the graphics window where the plot will be produced.  The function
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returns the plot of the original data points and the polynomial fitting.   A listing of the function
follows:
function plotpoly(xx,yy,p)

//Plots original data and polynomial fitting
//for degree p

[m n] = size(xx);
xmin = min(xx); xmax = max(xx);
xs = [xmin:(xmax-xmin)/100:xmax];
[mm nn] = size(xs);

getf('polyfit');
[SSE,r,b] = polyfit(xx,yy,p);

XX = ones(1,nn);
for j = 1:p
    XX = [XX;xs^j];
end;

yfit = b'*XX;
ymin = min(yfit); ymax = max(yfit);

nwindow = input('Enter the graphic window number:');
xset('window',nwindow);
xset('mark',-9,3);

//plot2d(xs,yfit);
//plot2d(xx,yy,-9);

plot2d(xx',yy',-9,'010','x',[xmin ymin xmax ymax])
plot2d(xs',yfit',1,'011','x',[xmin ymin xmax ymax])

//end function

Calling the function for p = 5, for example, produces the following:

-->getf('plotpoly')

-->plotpoly(x,y,5)

 Enter the graphic window number:
-->  2
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Exercises
[1].  Using SCILAB rand function to generate a matrix A2x2 (-->A = rand(2,2))and a matrix B2x2

(-->B = rand(2,2)).  Then, calculate the following:

(a)AT (b)A-1 (c)BT (d)B-1 (e)A+B (f)A-B
(g) 2A (h) -5B (i) 2A-5B (j) AT - BT (k) 3A-1+5BT (l) A⋅⋅⋅⋅B
(m)B⋅A (n)A-1⋅A (o)A-1⋅AT (p) B-1⋅A (q)A-1⋅BT (r) A⋅B⋅BT

(s) BT⋅B (t) BT⋅B+ A-1⋅AT (u) A-1⋅AT⋅BT (v) norm(A,2) (w)det(A) (x)trace(A)
(y) rank(B) (z) cond(A)

[2]. Using SCILAB rand function generate a matrix A3x3 and a matrix B3x3.  Then, calculate the
following:

(a)AT (b)A-1 (c)BT (d)B-1 (e)A+B (f)A-B
(g) 2A (h) -5B (i) 2A-5B (j) AT - BT (k) 3A-1+5BT (l) A⋅⋅⋅⋅B
(m)B⋅A (n)A-1⋅A (o)A-1⋅AT (p) B-1⋅A (q)A-1⋅BT (r) A⋅B⋅BT

(s) BT⋅B (t) BT⋅B+ A-1⋅AT (u) A-1⋅AT⋅BT (v) norm(A,2) (w)det(A) (x)trace(A)
(y) rank(B) (z) cond(A)

[3]. Using SCILAB rand function generate a matrix A3x2 and a matrix B3x2.  Then, if possible,
calculate the following:

(a)AT (b)A-1 (c)BT (d)B-1 (e)A+B (f)A-B
(g) 2A (h) -5B (i) 2A-5B (j) AT - BT (k) 3A-1+5BT (l) A⋅⋅⋅⋅B
(m)B⋅A (n)A-1⋅A (o)A-1⋅AT (p) B-1⋅A (q)A-1⋅BT (r) A⋅B⋅BT

(s) BT⋅B (t) BT⋅B+ A-1⋅AT (u) A-1⋅AT⋅BT (v) norm(A,2) (w)norm(A,∞) (x)rank(A)

[4]. Using SCILAB rand function generate a matrix A3x2 and a matrix B2x3.  Then, if possible,
calculate the following:

(a)AT (b)A-1 (c)BT (d)B-1 (e)A+B (f)A-B
(g) 2A (h) -5B (i) 2A-5B (j) AT - BT (k) 3A-1+5BT (l) A⋅⋅⋅⋅B
(m)B⋅A (n)A-1⋅A (o)A-1⋅AT (p) B-1⋅A (q)A-1⋅BT (r) A⋅B⋅BT

(s) BT⋅B (t) BT⋅B+ A-1⋅AT (u) A-1⋅AT⋅BT (v) norm(A,2) (w)norm(A,∞) (x)rank(A)
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[5]. Using SCILAB rand function generate matrices A2x2, and B3x3.  Then, obtain symmetric
matrices A’ and B’, and anti-symmetric matrices A” and B” such that A = A’+A”, and B = B’+B”.
Verify the results.

[6].  Generate the Vandermonde matrix, V, corresponding to the following vectors:
(a) [2,3,-1] (b) [5,5,-2,4] (c) [1,1,2,3,9] (d) [1,2,3,4,5,6]

[7].  For the matrices generated in [6] determine:
(a) determinant (b) rank (c) condition number (e)inverse

[8]. Generate the Hilbert matrix, H, of dimensions (a) 2×2, (b)3×3, (c) 4×4, and (d)5×5.

[9].  For the matrices generated in [6] determine:
(a) determinant (b) rank (c) condition number (e)inverse

[10]. Consider the system of linear equations given by:

(a) Solve the system of linear equations using Cramer’s rule
(b) solve the system of linear equations using matrices and the function linsolve
(c) solve the system of linear equations using x = A-1b
(d) solve the system of linear equations using Gaussian elimination and back substitution
(e) solve the system of linear equations using Gauss-Jordan elimination
(f) solve the system of linear equations using left division, i.e., x = A\b

[11].  Consider the system of linear equations:

2x+4y=2
x+y =2

2x+3y = 2

(a) Sketch the lines represented by the equations in the x-y plane with -5<x<5, -5<y<5.  Is
there a unique solution for the system?

(b) Obtain a “solution” to the system by using SCILAB function leastsq.  Sketch the solution
point together with the lines.

(c) Determine the error involved in this “solution”.

[12].  Consider the system of linear equations:

5x - 2y + 3z = 10
x - 3y + 4z = 20

(a) Obtain a solution to the system using the function linsolve
(b) Obtain a solution to the system using the function leastsq
(c) What is the rank of the matrix of coefficients for this linear system

 = 













 +  − X 2 Y Z

 +  −  − 2 X 2 Y Z 3 W

 +  +  + 2 X 5 Y Z W

 +  + X 2 Z 2 W
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-1
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1
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[13]. Consider the following systems of linear equations:

  X +2Y+3Z = 28, 2X +4Y+6Z =   18, 2X +4Y+6Z = -4,
3X  -2Y+  Z =  4, 3X  -2Y+  Z = -10, 3X  -2Y+  Z =  4,
4X +2Y   -Z = 10, 4X +2Y   -Z =  38, 4X +2Y   -Z = 24.

(a) Solve the multiple linear system by using matrices and the function linsolve
(b) Solve the multiple linear system by using an augmented matrix and Gauss-Jordan

elimination
(c) Solve the multiple linear system by using the inverse matrix of coefficients
(d) Obtain the inverse of the matrix of coefficients by using the appropriate augmented

matrix and Gauss-Jordan elimination.  Verify this solution by using the function inv

[14].  Given the matrix

corresponding to the eigenvalue problem:  Ax = λx,

(a) Obtain the characteristic matrix for the eigenvalue problem
(b) Obtain the characteristic polynomial corresponding to matrix A
(c) Plot the characteristic polynomial in the range -6 < λ < 10
(d) Solve the characteristic polynomial to obtain the eigenvalues, λ, of matrix A
(e) Obtain the eigenvalue, λ, of matrix A using the function spec
(f) Obtain the eigenvectors, x, of matrix A using the user-defined function eigenvectors

[15].  Given the matrices

corresponding to the generalized eigenvalue problem Ax = λBx,

(a) Obtain the characteristic matrix for the eigenvalue problem
(b) Obtain the characteristic polynomial corresponding to matrix A
(g) Plot the characteristic polynomial in the range -6 < λ < 10
(h) Solve the characteristic polynomial to obtain the eigenvalues, λ, of matrix A
(i) Obtain the generalized eigenvalues, λ, of matrix A using the function geigenvectors
(j) Obtain the eigenvectors, x, of matrix A using the function geigenvectors

[16].  Determine the matrices L, U, and P corresponding to the LU decomposition of

 := A













-1 0 5 4

0 3 -2 2

5 -2 4 1

4 2 1 3

 := A













-1 3 5

3 4 2

5 2 3

 := B













2 -3 2

-3 4 2

2 2 10
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(a) matrix A in problem [14]
(b) matrix A in problem [15]
(c) matrix B in problem [15].

[17]. Determine the matrices Q and R corresponding to the QR decomposition of
(a) matrix A in problem [14]
(b) matrix A in problem [15]
(c) matrix B in problem [15].

[18].  Determine the matrices U and V of left and right vectors and the vector of singular
values s corresponding to

(a) matrix A in problem [14]
(b) matrix A in problem [15]
(c) matrix B in problem [15].

[19].  Expand the quadratic form f(x)= xTAx for x = [X,Y,Z]T, where matrix A represents
(a) matrix A in problem [14]
(b) matrix A in problem [15]
(c) matrix B in problem [15].

[20].  For the electric circuit shown below

Determine the electrical currents I1, I2, I3, and I4, associated with the circulation loops shown in
the figure, if

(a) R1 = R3 = R5 = R7 = R9 = 1.5 kΩ, R2 = R4 = R6 = R8 = 800 Ω, V1 = 12 V, V2 = 24 V, V3 = 6 V
(b) R1 = R3 = R5 = R7 = R9 = R2 = R4 = R6 = R8 = 1.2 kΩ, V1 = 12 V, V2 = V3 = 6 V
(c) R1 = R3 = R5 = R7 = R9 = 2.2 kΩ, R2 = R4 = R6 = R8 = 1.2 kΩ, V1 = V2 = V3 = 18 V
(d) R1 = R3 = R5 = R7 = R9 = 0.5 kΩ, R2 = R4 = R6 = R8 = 0.8 kΩ, V1 = 6 V, V2 = 12 V, V3 = 6 V

[21].  The truss shown in the figure below is such that all horizontal and vertical bars are of
length 1.0 m, diagonal bars of length 1.4142 m, and all acute angles in the truss are 45o.
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Determine the axial forces in the truss elements if

(a) P1  =  100 kN, P2 = 200 kN, P3 = 200 kN, P4 = 100 kN.
(b) P1  =  P2 = P3 =  P4 =  200 kN.
(c) P1  =  50 kN, P2 = 150 kN, P3 = 50 kN, P4 =  150 kN.
(d) P1  =  50 kN, P2 = 150 kN, P3 = 200 kN, P4 =  250 kN.

To determine the reactions use the equations of moments taken about the points of application
of R1 and R2, respectively:

- 3R2
  + 1⋅(P1 + P3) + 2⋅ (P2 + P4) = 0

   3R1  - 1⋅ (P2 + P4) - 2⋅ (P1 + P3) = 0

[22]. Obtain dimensionless numbers to describe a fluid mechanics experiment that involves the
following variables:

H = a characteristic water depth(L)
Q = a flow rate (LT-3)
µ = dynamic viscosity of a fluid (ML-1T-1)
γ = specific weight of a fluid (ML-2T-2)
P0 = a characteristic pressure in the flow (ML-1T-2)
g = acceleration of gravity (LT-2)

Let , H, Q and γ, be the repeating variables in the dimensionless numbers.

[23].  The state of stress at a point within a solid in equilibrium is given by the stress tensor

where the components of T represent stresses in kPa.   For a plane passing through the point of
interest with a normal vector given by n = [5, -5, 2], determine:

(a) the total stress on the plane
(b) the normal stress on the plane
(c) the shear stress on the plane

 := T













12 -22 40

-22 -10 5

40 5 15
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(d) the total, normal, and shear forces on the plane if the area of the plane is 0.0005 m2.

[24]. For the stress tensor given in problem [23] determine:

(a) the principal stresses
(b) the vectors corresponding to the principal axes

[25].  The table below shows sediment load data (y, in kg/min) obtained in a laboratory flume
under controlled conditions.   The sediment load, y, is known to be a function of the water
discharge, x1 (lt/sec), of the mean sediment diameter, x2 (cm), and of the flume slope, x3 (10-3

m/m).   Using matrices determine a multiple linear fitting of the form

y = b0 + b1x1 + b2x2 + b3x3

for the data provided in the table.

x1 x2 x3 y
1.20 0.50 3.5 27.35
1.40 0.75 4.5 29.86
1.60 1.00 5.5 35.15
1.80 1.50 3.5 33.45
2.00 2.00 4.5 38.98
2.20 2.50 5.5 43.35
2.40 0.50 3.5 30.72
2.60 0.75 4.5 34.13
2.80 1.00 5.5 38.45
3.00 1.50 3.5 37.12
3.20 2.00 4.5 42.83
3.40 2.50 5.5 47.12

[26].  The table below shows the water discharge, y(103 cubic feet per second), measured at a
gage station in a large river as a function of time, x(days), during a 40-day period in the early
spring season.   A plot of y vs. x is known as a hydrograph.

x y
1.5 101.42
5.0 176.73
8.5 311.22
12.0 389.61
15.5 546.24
19.0 638.14
22.5 716.99
26.0 743.60
29.5 737.96
33.0 623.16
36.5 492.53
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40.0 15.84

(a) Determine a polynomial fitting for this hydrograph with p = 2, 3, 4, 5, and 6, where the
polynomial fitting is of the form

y = b0 + b1x + b2x
2 + … + bpx

p

(b) Select the best polynomial fitting for the hydrograph based on the values of the
correlation coefficient and of the sum of squared errors, SSE.

(c) Plot the original hydrograph data and the fitted polynomial in the same set of axes.
(d) The area under the curve for 0 < x < 40 days, represents the total volume of water

passing through the mouth of the river in that period.  Using the fitted polynomial and
the function int (integral) estimate the volume of water passing through the gage
station in the 40-day period of interest.
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